Opendata, web and dolomites

Schizophrenia Organoids

Understanding the role of parvalbumin interneuron development in schizophrenia using human cerebral organoids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Schizophrenia Organoids" data sheet

The following table provides information about the project.

Coordinator
INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH 

Organization address
address: DR BOHRGASSE 3
city: WIEN
postcode: 1030
website: www.imba.oeaw.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Project website https://www.imba.oeaw.ac.at/research/juergen-knoblich/
 Total cost 178˙156 €
 EC max contribution 178˙156 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH AT (WIEN) coordinator 178˙156.00

Map

 Project objective

Neuropsychiatric disorders account for 1/5 of the total disease burden in Europe causing mental anguish and decreased quality of life for those affected, especially for schizophrenia patients. An intriguing theory suggests that altered brain development results in schizophrenia, and the selective cellular defects in parvalbumin (PV) inhibitory interneurons observed in schizophrenic patient brains. However, the role of altered interneuron development in producing these pathophysiological hallmarks of schizophrenia is currently unknown due to a lack of cellular models of human interneuron development. Cerebral organoids are a revolutionary in vitro model of embryonic brain development generating complex brain circuits and recapitulating many aspects of interneuron development. The generation of organoid tissue from hiPSCs allows for the growth of patient-specific brain tissue. Therefore, the current proposal will develop a cerebral organoid schizophrenia model to analyze PV-interneuron development. First, cerebral organoids will be grown from patient-derived hiPSCs genetically modified to include a PV-GFP reporter. Using this reporter, genome-wide PV-specific gene expression will be analyzed to identify deregulated developmental pathways during PV-interneuron development. Second, a phenotypic analysis of PV-interneuron development will determine how PV-interneuron synaptic morphology and/or migration are altered in this cerebral organoid schizophrenia model. These assays are relevant to disease-related pathology, and will include axonal morphological analysis and a novel organoid co-culture migration assay. These results will determine the role of interneuron development in the pathophysiology of neuropsychiatric disease for the first time in human tissue. Understanding the developmental mechanisms of schizophrenia will address a major unmet therapeutic need by inspiring new avenues of innovative therapeutic strategies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCHIZOPHRENIA ORGANOIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCHIZOPHRENIA ORGANOIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

EVER (2019)

Evolution of VEnom Regulation

Read More