Opendata, web and dolomites

PrintPack SIGNED

Arranging the Particles: Step Changing Chemical Measurement Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PrintPack project word cloud

Explore the words cloud of the PrintPack project. It provides you a very rough idea of what is the project "PrintPack" about.

moore    optimized    positioning    chromatography    columns    groundbreaking    arranged    lc    latest    ordered    structured    bed    move    mixtures    degree    leave    realized    separation    human    assembly    spherical    law    paradigm    purpose    inventive    gain    rationally    theory    generation    packed    bio    biology    environmental    pushed    liquid    pursue    perfectly    decade    structures    reaction    1500    proposing    strategy    cells    disruptive    soon    particle    last    pressure    life    manufacturing    sciences    basically    halt    complexity    world    composition    microfluidic    monodisperse    badly    strategies    analytical    bar    throughput    accessible    optimize    biomedical    coping    chemical    crystals    concomitantly    networks    margin    nano    size    illustrate    samples    efficiencies    disorder    micrometer    deposition    speed    constantly    photonic    reducing    particles    remaining    pi    discoveries    progress    experimental    geometries    till    parts    unravel    scientists   

Project "PrintPack" data sheet

The following table provides information about the project.

Coordinator
VRIJE UNIVERSITEIT BRUSSEL 

Organization address
address: PLEINLAAN 2
city: BRUSSEL
postcode: 1050
website: www.vub.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙488˙812 €
 EC max contribution 2˙488˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    VRIJE UNIVERSITEIT BRUSSEL BE (BRUSSEL) coordinator 2˙488˙812.00

Map

 Project objective

The progress in liquid chromatography (LC), basically following Moore’s law over the last decade, will soon come to a halt. LC is the current state-of-the-art chemical separation method to measure the composition of complex mixtures. Driven by the ever growing complexity of the samples in e.g., environmental and biomedical research, LC is constantly pushed to higher efficiencies. Using highly optimized and monodisperse spherical particles, randomly packed in high pressure columns, the progress in LC has up till now been realized by reducing the particle size and concomitantly increasing the pressure. With pressure already up at 1500 bar, groundbreaking progress is still badly needed, e.g., to fully unravel the complex reaction networks in human cells. For this purpose, it is proposed to leave the randomly packed bed paradigm and move to structures wherein the 1 to 5 micrometer particles currently used in LC are arranged in perfectly ordered and open-structured geometries. This is now possible, as the latest advances in nano-manufacturing and positioning allow proposing and developing an inventive high-throughput particle assembly and deposition strategy. The PI's ability to develop new parts of chromatography will be used to rationally optimize the many possible geometries accessible through this disruptive new technology, and identify those structures coping best with any remaining degree of disorder. Using the PI's experimental know-how on microfluidic chromatography systems, these structures will be used to pursue the disruptive gain margin (order of factor 100 in separation speed) that is expected based on general chromatography theory. Testing this groundbreaking new generation of LC columns together with world-leading bio-analytical scientists will illustrate their potential in making new discoveries in biology and life sciences. The new nano-assembly strategies might also be pushed to other applications, such as photonic crystals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRINTPACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRINTPACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CountIce (2020)

A portable instrument (PINE) for the autonomous detection of atmospheric ice nucleating particles aimed at the research, global monitoring and cloud seeding markets

Read More  

FIRM (2019)

Form and Function of the Mitochondrial Retrograde Response

Read More  

e-MICROBe (2020)

Energizing microbes with redox mediators for new bioproductions

Read More