Opendata, web and dolomites

PrintPack SIGNED

Arranging the Particles: Step Changing Chemical Measurement Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PrintPack project word cloud

Explore the words cloud of the PrintPack project. It provides you a very rough idea of what is the project "PrintPack" about.

biology    deposition    chromatography    moore    degree    networks    crystals    latest    human    pursue    unravel    complexity    optimize    halt    groundbreaking    bar    accessible    microfluidic    optimized    constantly    pushed    micrometer    remaining    strategies    geometries    biomedical    1500    sciences    environmental    reducing    rationally    margin    composition    move    bio    coping    pressure    nano    bed    generation    leave    structures    reaction    structured    perfectly    spherical    manufacturing    experimental    illustrate    particles    law    paradigm    inventive    basically    life    analytical    till    pi    decade    mixtures    particle    arranged    photonic    throughput    monodisperse    liquid    disruptive    soon    packed    discoveries    strategy    separation    concomitantly    world    proposing    theory    last    gain    realized    ordered    purpose    speed    progress    efficiencies    badly    assembly    parts    scientists    size    lc    positioning    chemical    disorder    samples    columns    cells   

Project "PrintPack" data sheet

The following table provides information about the project.

Coordinator
VRIJE UNIVERSITEIT BRUSSEL 

Organization address
address: PLEINLAAN 2
city: BRUSSEL
postcode: 1050
website: www.vub.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙488˙812 €
 EC max contribution 2˙488˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    VRIJE UNIVERSITEIT BRUSSEL BE (BRUSSEL) coordinator 2˙488˙812.00

Map

 Project objective

The progress in liquid chromatography (LC), basically following Moore’s law over the last decade, will soon come to a halt. LC is the current state-of-the-art chemical separation method to measure the composition of complex mixtures. Driven by the ever growing complexity of the samples in e.g., environmental and biomedical research, LC is constantly pushed to higher efficiencies. Using highly optimized and monodisperse spherical particles, randomly packed in high pressure columns, the progress in LC has up till now been realized by reducing the particle size and concomitantly increasing the pressure. With pressure already up at 1500 bar, groundbreaking progress is still badly needed, e.g., to fully unravel the complex reaction networks in human cells. For this purpose, it is proposed to leave the randomly packed bed paradigm and move to structures wherein the 1 to 5 micrometer particles currently used in LC are arranged in perfectly ordered and open-structured geometries. This is now possible, as the latest advances in nano-manufacturing and positioning allow proposing and developing an inventive high-throughput particle assembly and deposition strategy. The PI's ability to develop new parts of chromatography will be used to rationally optimize the many possible geometries accessible through this disruptive new technology, and identify those structures coping best with any remaining degree of disorder. Using the PI's experimental know-how on microfluidic chromatography systems, these structures will be used to pursue the disruptive gain margin (order of factor 100 in separation speed) that is expected based on general chromatography theory. Testing this groundbreaking new generation of LC columns together with world-leading bio-analytical scientists will illustrate their potential in making new discoveries in biology and life sciences. The new nano-assembly strategies might also be pushed to other applications, such as photonic crystals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRINTPACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRINTPACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

AST (2019)

Automatic System Testing

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More