Explore the words cloud of the SYNNOVATE project. It provides you a very rough idea of what is the project "SYNNOVATE" about.
The following table provides information about the project.
Coordinator |
THE UNIVERSITY OF EDINBURGH
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Project website | http://synaptome.genes2cognition.org/ |
Total cost | 2˙000˙000 € |
EC max contribution | 2˙000˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-AdG |
Funding Scheme | ERC-ADG |
Starting year | 2016 |
Duration (year-month-day) | from 2016-08-01 to 2021-07-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE UNIVERSITY OF EDINBURGH | UK (EDINBURGH) | coordinator | 2˙000˙000.00 |
Synapses are a hallmark of the brain, showing remarkable anatomical and molecular complexity, and central to the aetiology and progression of hundreds of brain diseases. The vertebrate brain has a vast potential synapse diversity arising from the differential distribution of combinations of proteins into individual synapses. This has led to the recognition that “synaptome mapping” needs to be developed where the expression level of individual proteins is robustly measured in individual synapses across the whole brain. We developed a novel and unique ‘synaptome discovery and imaging platform’ that links the molecular organisation of synapses with the spatial and temporal anatomical diversity of individual synapses and charts molecular synaptome maps across the brain. This platform enables routine and rapid quantification of genetically encoded molecular markers, with multiple functionalities, in almost a billion synapses in hundreds of brain regions of the mouse and generates statistically robust synapse catalogues and molecular maps of the brain. We have uncovered remarkable new neuroanatomical features and revealed a synaptic molecular architecture at the systems-wide scale. We have discovered this architecture is radically reorganised by mutations that cause schizophrenia, intellectual disability and autism. We have also shown these new methods can label activity-dependent reorganisation of single synapses at a whole brain scale, enabling the tracing of synaptic memory engrams. Our goals are to understand how synaptome maps develop and are reorganized by mutations causing cognitive disorders; examine experience-dependent map plasticity during development, following learning and electrophysiological stimulation in normal animals and those carrying cognitive disorder mutations. We also plan to develop computational approaches based on synaptome maps and freely distribute genetic and image analysis tools to promote synaptome mapping in the community.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Fei Zhu, Mélissa Cizeron, Zhen Qiu, Ruth Benavides-Piccione, Maksym V. Kopanitsa, Nathan G. Skene, Babis Koniaris, Javier DeFelipe, Erik Fransén, Noboru H. Komiyama, Seth G.N. Grant Architecture of the Mouse Brain Synaptome published pages: 781-799, ISSN: 0896-6273, DOI: 10.1016/j.neuron.2018.07.007 |
Neuron 99 | 2020-03-20 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNNOVATE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SYNNOVATE" are provided by the European Opendata Portal: CORDIS opendata.
HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration
Read More