Opendata, web and dolomites

OSIRIS SIGNED

Organic Semiconductors Interfaced with Biological Environments

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OSIRIS project word cloud

Explore the words cloud of the OSIRIS project. It provides you a very rough idea of what is the project "OSIRIS" about.

macromolecules    assembly    simultaneously    demonstrated    essentially    thermal    structurally    nature    molecules    hybrid    of    attenuated    complexity    transduced    limited    environments    principles    biosensing    exposure    either    transduction    underlying    interplay    films    overcome    solid    bioelectronics    nanoscale    considerable    thin    containing    generation    aqueous    time    macroscopic    electrolytes    neuroscience    electric    shifts    interface    liquid    brain    disordered    biological    progress    incorporated    neural    mobility    dissolved    scientific    conjugated    proof    bioresearch    biomolecules    frequency    similarity    healthcare    osiris    geometry    mechanistic    soluble    structural    ionic    missing    medium    sensing    water    semiconductors    spectroscopic    cells    optoelectronic    gaining    signals    reflection    ultrafast    terahertz    stark    polyelectrolytes    stimulation    living    fundamental    total    favours    versatile    photo    transfer    molecular    transport    bio    resolution    bioelectronic    linear    integration    sum    charge    organic    interfacial    spectroscopy    optoelectronics    world    electronic    immersed    poor    optical    transducing   

Project "OSIRIS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET BERN 

Organization address
address: HOCHSCHULSTRASSE 6
city: BERN
postcode: 3012
website: http://www.unibe.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙498˙275 €
 EC max contribution 1˙498˙275 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-08-01   to  2022-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET BERN CH (BERN) coordinator 1˙498˙275.00
2    UNIVERSITE DE FRIBOURG CH (FRIBOURG) participant 0.00

Map

 Project objective

Transducing information to and from biological environments is essential for bioresearch, neuroscience and healthcare. There has been recent focus on using organic semiconductors to interface the living world, since their structural similarity to bio-macromolecules strongly favours their biological integration. Either water-soluble conjugated polyelectrolytes are dissolved in the biological medium, or solid-state organic thin films are incorporated into bioelectronic devices. Proof-of-concept of versatile applications has been demonstrated – sensing, neural stimulation, transduction of brain activity, and photo-stimulation of cells. However, progress in the organic biosensing and bioelectronics field is limited by poor understanding of the underlying fundamental working principles. Given the complexity of the disordered, hybrid solid-liquid systems of interest, gaining mechanistic knowledge presents a considerable scientific challenge. The objective of OSIRIS is to overcome this challenge with a high-end spectroscopic approach, at present essentially missing from the field. We will address: 1) The nature of the interface at molecular and macroscopic level (assembly of polyelectrolytes with bio-molecules, interfacial properties of immersed organic thin films). 2) How the optoelectronics of organic semiconductors are affected upon exposure to aqueous environments containing electrolytes, biomolecules and cells. 3) How information is transduced across the interface (optical signals, thermal effects, charge transfer, electric fields, interplay of electronic/ionic transport). Via spectroscopy, we will target relevant optoelectronic processes with ultrafast time-resolution, structurally characterize the solid-liquid interface using non-linear sum-frequency generation, exploit Stark shifts related to interfacial fields, determine nanoscale charge mobility using terahertz spectroscopy in attenuated total reflection geometry, and simultaneously measure ionic transport.

 Publications

year authors and title journal last update
List of publications.
2019 Demetra Tsokkou, Lisa Peterhans, David Xi Cao, Cheng‐Kang Mai, Guillermo C. Bazan, Thuc‐Quyen Nguyen, Natalie Banerji
Excited State Dynamics of a Self‐Doped Conjugated Polyelectrolyte
published pages: 1906148, ISSN: 1616-301X, DOI: 10.1002/adfm.201906148
Advanced Functional Materials 30/9 2020-04-01
2020 Philipp Krauspe, Natalie Banerji, Julien Réhault
Effective detection of weak terahertz pulses in electro-optic sampling at kilohertz repetition rate
published pages: 127, ISSN: 0740-3224, DOI: 10.1364/josab.37.000127
Journal of the Optical Society of America B 37/1 2020-04-01

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OSIRIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OSIRIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More