Opendata, web and dolomites

AQUARAMAN SIGNED

Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AQUARAMAN project word cloud

Explore the words cloud of the AQUARAMAN project. It provides you a very rough idea of what is the project "AQUARAMAN" about.

nanoscale    vacuum    sensitivity    environments    heterogeneity    science    characterization    probes    failing    intrinsic    ingenious    optical    unattainable    combines    label    ters    employment    free    limited    surfaces    biology    microscopy    air    systematic    reliability    proximities    techniques    stability    spectroscopy    solid    probe    spanning    revolutionary    pb    spm    consistency    founded    playing    situ    liquid    nowadays    liquids    interfacial    classic    afm    manner    nano    water    spatial    innovative    unavoidable    physics    undeniable    reveal    chemistry    follow    content    physicochemical    electrolyte    unprecedented    chemical    unexplored    possession    platform    experiments    fundamental    technique    materials    hindering    alternative    phenomena    pipet    resolution    structural    questions    raman    unfortunately    tip    enhanced    material    metallized    opportunity    electrochemistry    vibrational    surface    powerful    brings    stm    dynamic    operate    tool    scanning   

Project "AQUARAMAN" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE 

Organization address
address: ROUTE DE SACLAY
city: PALAISEAU CEDEX
postcode: 91128
website: http://www.polytechnique.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙528˙442 €
 EC max contribution 1˙528˙442 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-07-01   to  2022-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FR (PALAISEAU CEDEX) coordinator 1˙528˙442.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 0.00

Map

 Project objective

Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science. Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique. We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques. We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AQUARAMAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AQUARAMAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More