Explore the words cloud of the 321 project. It provides you a very rough idea of what is the project "321" about.
The following table provides information about the project.
Coordinator |
POLITECNICO DI TORINO
Organization address contact info |
Coordinator Country | Italy [IT] |
Total cost | 2˙000˙000 € |
EC max contribution | 2˙000˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2016-COG |
Funding Scheme | ERC-COG |
Starting year | 2017 |
Duration (year-month-day) | from 2017-09-01 to 2022-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | POLITECNICO DI TORINO | IT (TORINO) | coordinator | 2˙000˙000.00 |
2 | INSTITUT MINES-TELECOM | FR (PARIS) | participant | 0.00 |
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
year | authors and title | journal | last update |
---|---|---|---|
2018 |
Lyes Rahmouni, Simon B. Adrian, Kristof Cools, Francesco P. Andriulli Conforming discretizations of boundary element solutions to the electroencephalography forward problem published pages: 7-25, ISSN: 1631-0705, DOI: 10.1016/j.crhy.2018.02.002 |
Comptes Rendus Physique 19/1-2 | 2019-06-06 |
2019 |
S.B. Adrian, F.P. Andriulli, T.F. Eibert On a refinement-free Calderón multiplicative preconditioner for the electric field integral equation published pages: 1232-1252, ISSN: 0021-9991, DOI: 10.1016/j.jcp.2018.10.009 |
Journal of Computational Physics 376 | 2019-06-06 |
2019 |
Axelle Pillain, Lyes Rahmouni, Francesco Andriulli Handling anisotropic conductivities in the EEG forward problem with a symmetric formulation published pages: 35022, ISSN: 1361-6560, DOI: 10.1088/1361-6560/aafaaf |
Physics in Medicine & Biology 64/3 | 2019-06-06 |
2018 |
John E. Ortiz G., Axelle Pillain, Lyes Rahmouni, Francesco P. Andriulli A Calderon regularized symmetric formulation for the electroencephalography forward problem published pages: 291-306, ISSN: 0021-9991, DOI: 10.1016/j.jcp.2018.07.048 |
Journal of Computational Physics 375 | 2019-06-06 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "321" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "321" are provided by the European Opendata Portal: CORDIS opendata.