Explore the words cloud of the ImpChar project. It provides you a very rough idea of what is the project "ImpChar" about.
The following table provides information about the project.
Coordinator |
THE UNIVERSITY OF EXETER
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2016 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2017 |
Duration (year-month-day) | from 2017-10-01 to 2020-11-29 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE UNIVERSITY OF EXETER | UK (EXETER) | coordinator | 195˙454.00 |
Over the last half a century there has been much debate over the quantities and mechanisms of thermal energy release during impacts of small asteroids such as Tunguska event (Russia) or Kaali craters. This has been caused in a large part by the fact that the existing observational and modelling approaches have focused on large impact craters that generate high temperature/pressure transitions which leave noticeable signatures in the rocks they affect. However, small impacts craters developed in unconsolidated materials have not been thought to leave long lasting traces of the thermal energy released during their formation. Recently however, Losiak et al. (2016) found charcoal buried within ejecta blanket of Kaali Main crater where sedimentological analyses and 14C dating suggest that the charcoal was formed at the same time as the craters within which they were found. Subsequently Losiak identified charcoal in Kaali 2/8, Ilumetsa Small, Ilumetsa Large and the Morasko Main craters, indicating that charcoal is not restricted to a single crater, single impact or single location. Project ImpCHAR will use a novel analysis method that measures the reflectance properties of charcoal, which has been recently shown to relate to the energy that created it. ImpCHAR will use this method to determine the heating regime from which the chars were created. In order to achieve this Project ImpCHAR will experimentally recreate the heating conditions in a laboratory setting in order to determine the most likely mechanism of charcoal formation. This will allow developing a method of unequivocally identifying small impact craters developed in vegetated unconsolidated sediments: up to this point most of those kinds of structures could be identified only based on circumstantial evidence of co-existing crater-like shape and occurrence of meteorites. Additionally, ImpCHAR will critically disentangle debate surrounding the energy release during formation of small impact craters.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMPCHAR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "IMPCHAR" are provided by the European Opendata Portal: CORDIS opendata.
Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila
Read MoreHow other minds are represented in the human brain: Neural computations underlying Theory of Mind
Read MoreContain, Distribute, Obstruct. Governing the Mobility of Asylum Seekers in the European Union
Read More