Opendata, web and dolomites

DropContEvo SIGNED

A droplet microfluidic system for continuous in vivo evolution.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DropContEvo project word cloud

Explore the words cloud of the DropContEvo project. It provides you a very rough idea of what is the project "DropContEvo" about.

broad    active    biomolecules    beneficiary    throughput    biotechnologists    synthase    efficient    oil    evolutionary    aid    stage    industrial    bacteria    cell    picoliter    format    coli    water    unsupervised    of    multiple    hundreds    professional    specialists    droplet    dr    schemes    larger    community    vivo    evolution    passive    populations    accelerate    ing    encapsulation    cycles    nutrients    containing    series    nanoliter    sorting    fluorescence    microbiology    economically    fresh    confinement    strategies    acute    technologies    times    microfluidic    compartments    directed    continuous    soft    vitro    comprise    content    skills    presenting    training    laboratory    cycle    libraries    specializes    splitting    population    absorbance    experiments    cells    enzymes    single    dilution    breakthrough    droplets    screening    picodroplets    ultra    proof    biotechnology    trps    microfluidics    complementary    reaction    small    hollfelder    coupled    volume    tryptophan    extensive    biologists    thousands    biochemistry   

Project "DropContEvo" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2019-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Droplet microfluidics has recently become one of the breakthrough technologies for high throughput screening in microbiology and biochemistry, including single cell studies and new approaches to in vitro evolution. Here we propose a development of a novel microfluidic system for unsupervised execution of multiple cycles of in vivo continuous evolution in hundreds of thousands of picoliter droplets. Each evolutionary cycle will comprise: i) encapsulation of single bacteria cells in water-in-oil compartments ii) growth of the cells coupled with production of economically relevant biomolecules iii) selection of the most efficient populations using ultra-high-throughput sorting of picodroplets, iv) dilution of each population via merging with 100 times larger nanoliter droplet containing fresh nutrients and v) passive splitting of each of the resulting nanoliter droplets to the libraries of picoliter droplets containing single cells. Confinement of the reaction in small volume and active sorting of droplets will facilitate and accelerate the process of in vivo evolution. Droplet format will also enable for various screening schemes, so far not available for continuous evolution strategies – e.g. based on high throughput fluorescence or absorbance measurements of the droplet content. The second stage of the project will comprise a series of proof-of-concept experiments presenting directed continuous evolution of the tryptophan synthase (TrpS) in E.coli bacteria. The technology proposed here would be very useful for broad community of biotechnologists, evolutionary biologists and industrial specialists without the experience in microfluidics. The proposed research will be conducted at Dr. Hollfelder´s laboratory that specializes in directed evolution of enzymes and application of microfluidics to industrial biotechnology. The project comprise broad and extensive training in research and complementary soft skills that will aid professional development of the Beneficiary.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DROPCONTEVO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DROPCONTEVO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

MIRAGE (2019)

Measuring Interstellar Reactions of Aromatics by Gas-phase Experiments

Read More