Opendata, web and dolomites

SeleCHEM SIGNED

Overcoming the Selectivity Challenge in Chemistry and Chemical Biology via Innovative Tethering Strategies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SeleCHEM" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 2˙000˙000.00

Map

 Project objective

In the last two centuries, synthetic organic chemistry has undergone an unprecedented revolution. The ability to understand and modify the molecular structure of matter has changed our life in many areas, such as medicine, agriculture or commodity materials. These major successes gave the impression that synthetic chemistry is a mature field. However, this impression is completely misleading, as current synthetic methods still lack the selectivity needed for the modification of complex molecules. Both selecting between different reactive groups and functionalizing inert bonds in their presence represent formidable challenges. In this project, we propose to develop highly selective “molecular tethers” for the functionalization of both natural/synthetic organic compounds and biomolecules. The envisioned tethers are bifunctional small organic molecules having three fundamental properties: 1) A “biting end” with unique reactivity to be selectively installed in situ onto naturally occurring thiols, alcohols and amines. We will use tethers based on acetals and hypervalent iodine reagents. 2) A “functional end”, whose reactivity can be revealed “at will” to functionalize bonds that cannot be accessed with the current state of the art of synthetic chemistry, especially inert C-H and C=C bonds. 3) Being traceless, meaning that they can be removed easily once the desired functionalization has been achieved. The main impact of this project will be in fundamental synthetic organic chemistry, as it will contribute to overcoming major selectivity hurdles in the functionalization of complex molecules. It will therefore result in faster progress in all the fields depending on synthetic molecules, such as medicine, agriculture or materials. A more efficient functionalization of biomolecules will allow us to soften the boundaries between synthetic chemistry and biology, leading to major progress in our understanding of living systems and our ability to modify them.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SELECHEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SELECHEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More  

AllergenDetect (2019)

Comprehensive allergen detection using synthetic DNA libraries

Read More  

DISSECT (2020)

DISSECT: Evidence in International Human Rights Adjudication

Read More