Explore the words cloud of the SeleCHEM project. It provides you a very rough idea of what is the project "SeleCHEM" about.
The following table provides information about the project.
Coordinator |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 2˙000˙000 € |
EC max contribution | 2˙000˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2017-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE | CH (LAUSANNE) | coordinator | 2˙000˙000.00 |
In the last two centuries, synthetic organic chemistry has undergone an unprecedented revolution. The ability to understand and modify the molecular structure of matter has changed our life in many areas, such as medicine, agriculture or commodity materials. These major successes gave the impression that synthetic chemistry is a mature field. However, this impression is completely misleading, as current synthetic methods still lack the selectivity needed for the modification of complex molecules. Both selecting between different reactive groups and functionalizing inert bonds in their presence represent formidable challenges. In this project, we propose to develop highly selective “molecular tethers” for the functionalization of both natural/synthetic organic compounds and biomolecules. The envisioned tethers are bifunctional small organic molecules having three fundamental properties: 1) A “biting end” with unique reactivity to be selectively installed in situ onto naturally occurring thiols, alcohols and amines. We will use tethers based on acetals and hypervalent iodine reagents. 2) A “functional end”, whose reactivity can be revealed “at will” to functionalize bonds that cannot be accessed with the current state of the art of synthetic chemistry, especially inert C-H and C=C bonds. 3) Being traceless, meaning that they can be removed easily once the desired functionalization has been achieved. The main impact of this project will be in fundamental synthetic organic chemistry, as it will contribute to overcoming major selectivity hurdles in the functionalization of complex molecules. It will therefore result in faster progress in all the fields depending on synthetic molecules, such as medicine, agriculture or materials. A more efficient functionalization of biomolecules will allow us to soften the boundaries between synthetic chemistry and biology, leading to major progress in our understanding of living systems and our ability to modify them.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SELECHEM" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SELECHEM" are provided by the European Opendata Portal: CORDIS opendata.