Opendata, web and dolomites

SpeedDMN

Quantum speed limits in thermodynamic processes and coherent control

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SpeedDMN" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2020-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 200˙194.00

Map

 Project objective

Recent years have seen remarkable strides taken in the understanding, simulation, and control of complex quantum systems, evidenced by the fact that so-called second generation quantum technologies are becoming viable and a global concerted effort to exploit quantum systems is steadily progressing. To maximise the potential of these emerging technologies we must both understand their underlying working principles and be able to manipulate them effectively. In regards to the former, the quickly growing field of quantum thermodynamics is, and continues to, develop the basic framework to understand work, heat, and efficiency when quantum systems are used. Regarding the latter, a plethora of techniques to control quantum systems have come to the forefront of research, each with its own advantages and drawbacks. From a practical standpoint we normally seek to achieve this control in the shortest possible time. In this regard, one of the most intriguing aspects of quantum systems emerged from the clarification of Heisenberg’s energy-time uncertainty relation when Mandelstam and Tamm showed that it sets a minimal time for a quantum system to evolve: the quantum speed limit time.

The main goal of the proposed action will be to exploit the recent developments in understanding the thermodynamics of quantum systems in order to develop control techniques for complex quantum systems that operate as quickly as physically possible, while requiring the minimal resources. This will be achieved by establishing connections between the quantum speed limit and other fundamental bounds, determining the achievability of the quantum speed limit using state-of-the-art control techniques, and designing new protocols that require minimal experimental resources, yet achieve a desired task.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPEEDDMN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPEEDDMN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More