Explore the words cloud of the SPLINTER project. It provides you a very rough idea of what is the project "SPLINTER" about.
The following table provides information about the project.
Coordinator |
INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT
Organization address contact info |
Coordinator Country | France [FR] |
Project website | https://www.researchgate.net/profile/Maud_Bernoux |
Total cost | 185˙076 € |
EC max contribution | 185˙076 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-RI |
Starting year | 2018 |
Duration (year-month-day) | from 2018-03-05 to 2020-09-05 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT | FR (PARIS CEDEX 07) | coordinator | 185˙076.00 |
Plant diseases are an economic, environmental and social threat affecting crop production worldwide. Effective plant disease resistance is a critical requirement to maintain world food security. Deployment of resistance (R) genes in crops is currently the most effective strategy for genetic control of disease. However, this type of resistance can be short-lived and is often affected by environmental stresses such as elevated temperature, which is highly concerning in the context of global warming. The proposed research aims to decipher the signaling function of intracellular plant immune receptors of the NOD-like receptor (NLR) family encoded by canonical and non-canonical (truncated) R genes. The opportunity at the heart of this project arises from the finding that N-terminal domains of NLRs act as potent signaling domains that are self-sufficient to activate immune responses independently of pathogen recognition and preliminary data indicate that this signaling activity is not compromised at elevated temperature (unlike full length NLRs). Hence, manipulating signaling downstream of pathogen recognition may lower the risk of resistance breakdown and provide a source of disease resistance adapted to global warming. Naturally occurring truncated NLRs lacking some of the canonical domains but containing N-terminal signaling domains are promising candidates to investigate this hypothesis. “SPLINTER” will focus on the signaling function of canonical and non-canonical NLRs in the major vegetable crop tomato, and the model plant Arabidopsis, mainly in response to the devastating phytopathogenic bacteria Ralstonia solanacearum and under temperature stress. This project will also establish a long-term research path for an early-mid career researcher returning to her home country.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPLINTER" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SPLINTER" are provided by the European Opendata Portal: CORDIS opendata.
Leveraging the potential of historical spy satellite photography for ecology and conservation
Read More