Opendata, web and dolomites

RESTREIG SIGNED

Development of A Method for Analysis of Creep Behaviour of Welded Rotating Components of High Temperature Applications Based on Eigenstrain Theory

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "RESTREIG" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

The need for high-quality joints in the aerospace industry has fostered the use of inertia friction welding for nickel-based super-alloy components. This technique provides improvements in the joint quality when compared to the fusion welding techniques, but understanding on the effect of residual stress on creep deformation of welded components is limited. The proposed research aims to develop new computational and numerical tools to reproduce the residual stress field in inertia welded components in the as-welded and post-weld heat treated conditions. This innovative approach will meet experimental data with the eigenstrain theory to reconstruct stress fields in large scales and provide a realistic model to understand creep behavior of materials under complex loading and high-temperature conditions. To achieve this target, the eigenstrain theory will be used with experimental measurements. This will allow modeling of complex geometries with high accuracy. The study will be composed of three stages which are data collection for eigenstrain reconstruction method, creating a model for eigenstrain reconstruction process and development of a visco-plastic model for investigating creep behavior of post weld heat treated samples. Results and data created in the first two stages will be used to create the visco-plastic model. Experiments will be performed using diffraction and contour methods and numerical models will be created using ABAQUS commercial finite element software. All research, management, training, dissemination, public engagement, and communication activities are scheduled into a 2 years work plan. The developed methodology is expected to provide a better understanding of creep behavior, to be used by other researcher and be beneficial for industry on the development of components with lower cost and longer service life. The success of this research will have a positive impact on the European Union and United Kingdom economies and societies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESTREIG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RESTREIG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More