Opendata, web and dolomites

Target5LO SIGNED

Targeting 5-lipoxygenase in the context of Acute Myeloid Leukemia

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Target5LO project word cloud

Explore the words cloud of the Target5LO project. It provides you a very rough idea of what is the project "Target5LO" about.

learning    profile    vivo    entities    spatiotemporal    linkers    profound    treat    dosage    acute    efficacy    constructs    reactions    quantitative    overcome    conjugate    imperative    site    windows    deployment    fact    chemistry    anticancer    successful    models    medical    blood    aml    cornerstone    showed    programs    displaying    cells    model    natural    mouse    employing    leukaemia    pipelines    implications    anti    correlated    modulate    strategies    patients    conjugates    investigation    modulator    fda    drugs    validate    biophysical    biology    il7r    lipoxygenase    broad    lapachone    leukemia    unmet    chemical    hope    naphthoquinone    adverse    antibody    cleavable    preclinical    fast    bioactivity    validated    vitro    clinical    drug    release    exploring    machine    discovery    dozens    disseminated    accurate    expression    cancers    pernicious    polypharmacology    myeloid    off    toxicity    untargeted    therapeutic    applicability    lp    biomarker    discontinued    lo    synthetic    completion    disease    allosteric    disclosed    medicinal    approved    sought    foresee    forms    considering    yield    narrow   

Project "Target5LO" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Drug efficacy is cornerstone for successful drug discovery programs. Considering that, on average, FDA-approved drugs modulate dozens of off-targets it remains imperative to find strategies to overcome adverse drug reactions correlated with pernicious polypharmacology. In fact, several chemical entities displaying promising anticancer are discontinued from drug development pipelines due to narrow therapeutic windows in pre-clinical models. Here, we propose the development of antibody-drug conjugates exploring the unique bioactivity profile of the naphthoquinone natural product-lapachone (Lp) against acute myeloid leukemia (AML), an unmet medical need. Using a machine learning method, we disclosed Lp as an allosteric modulator of 5-lipoxygenase (5-LO), correlated its anticancer activity with 5-LO expression in blood cancers and showed its efficacy in a disseminated mouse model of AML.

In this project, a comprehensive investigation of novel means for the targeted delivery of Lp to leukaemia cells is sought after, considering both the promising bioactivity profile but also the significant toxicity in untargeted dosage forms. We apply state-of-the-art synthetic medicinal chemistry to design and access cleavable linkers, and site-specifically conjugate Lp to an anti-IL7R antibody, a validated biomarker in AML and other leukaemia’s. We aim at employing biophysical and chemical biology approaches to validate quantitative and fast release of Lp with accurate spatiotemporal control in in vitro disease models. Finally, we will validate the deployment of the constructs through preclinical in vivo models of AML. We foresee broad applicability of the developed technology, which may have profound implications in drug discovery. Upon successful completion of this research program, we hope to yield a new targeted drug to treat AML patients with improved efficacy and reduced side-effects.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TARGET5LO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TARGET5LO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

INSANE (2020)

Joint Species And Niche Evolution

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More