Explore the words cloud of the SPLICEOSACT project. It provides you a very rough idea of what is the project "SPLICEOSACT" about.
The following table provides information about the project.
Coordinator |
UNITED KINGDOM RESEARCH AND INNOVATION
There are not information about this coordinator. Please contact Fabio for more information, thanks. |
Coordinator Country | United Kingdom [UK] |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-03-01 to 2021-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNITED KINGDOM RESEARCH AND INNOVATION | UK (SWINDON) | coordinator | 195˙454.00 |
2 | MEDICAL RESEARCH COUNCIL | UK (SWINDON) | coordinator | 0.00 |
Pre-mRNA splicing is a fundamental maturation step of eukaryotic mRNAs that consists of the removal of introns and the concomitant ligation of exons by two successive transesterification reactions. This complex biological process is catalyzed by the spliceosome, a gigantic ribonucleoprotein particle that assembles de novo on each intron and uses a single RNA-based active site to perform both reactions. The spliceosome is composed of five snRNPs (U1, U2, U4, U5, U6) that are recruited to pre-mRNAs in a stepwise manner. When a pre-catalytic spliceosome, consisting of all five snRNPs, is formed on a pre-mRNA it has no pre-existing active site and undergoes extensive compositional and conformational changes to become “catalytically competent”. During this transition, two snRNPs (U1 and U4) are lost and several new factors are recruited, ensuring the formation and stabilization of the active site as well as the correct positioning of the pre-mRNA’s reactive groups in the catalytic centre. Thanks to recent technological advances in Electron Microscopy (EM), a series of cryoEM structures of fully assembled “active” spliceosomes at atomic resolution have been solved in the host group and elsewhere, in the past two years. These structures, which have created much excitement in the RNA community, visualize the spliceosome during each step of the catalytic cycle and allow a mechanistic understanding of catalysis. However, due to the scarcity of high-resolution information on earlier complexes, many questions remain regarding spliceosome activation. My project aims at filling a gap in our understanding of pre-mRNA splicing by unraveling the molecular details of spliceosome activation. To that end, I will use a combination of biochemical characterization and cryoEM to study yeast spliceosome captured at discrete early stages of activation.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPLICEOSACT" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SPLICEOSACT" are provided by the European Opendata Portal: CORDIS opendata.
Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change
Read MoreDesign of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.
Read MoreTheorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater
Read More