Opendata, web and dolomites

INPHORS SIGNED

Intracellular phosphate reception and signaling: A novel homeostatic system with roles for an orphan organelle?

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "INPHORS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE LAUSANNE 

Organization address
address: Quartier Unil-Centre Bâtiment Unicentre
city: LAUSANNE
postcode: 1015
website: www.unil.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙499˙998 €
 EC max contribution 2˙499˙998 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE LAUSANNE CH (LAUSANNE) coordinator 2˙499˙998.00

Map

 Project objective

Cells face a phosphate challenge. Growth requires a minimal concentration of this limiting resource because intracellular phosphate (Pi) is a compound of nucleic acids and modifies most cellular proteins. At the same time, cytosolic Pi may not rise much, because elevated cytosolic Pi can stall metabolism. It reduces the free energy that nucleotide triphosphate hydrolysis can provide to drive energetically unfavorable reactions.

I will undertake a pioneering study to elucidate how cells strike this critical balance. We will identify a novel pathway for intracellular phosphate reception and signaling (INPHORS) and explore the role of acidocalcisomes in it. These studies may identify a key function of these very poorly understood organelles, provide one reason for their evolutionary conservation and elucidate a novel homeostatic system of critical importance for cellular metabolism.

We recently provided first hints that a dedicated pathway for sensing and signaling intracellular Pi might exist, which regulates multiple systems for import, export and acidocalcisomal storage of Pi, such that cytosolic Pi homeostasis is guaranteed 1. Yeast cells will serve as an powerful model system for exploring this pathway and its physiological relevance. Yeast Pi transport and storage proteins are known. Furthermore, we can establish cell-free in vitro systems that reconstitute Pi-regulated transport and storage processes, providing an excellent basis for identifying signaling complexes and studying their dynamics. We will (A) generate novel tools to uncouple, individually manipulate and measure key parameters for the INPHORS pathway; (B) identify its components, study their interactions and regulation; (C) elucidate how acidocalcisomes are targeted by INPHORS and how they contribute to Pi homeostasis; (D) study the crosstalk between INPHORS and Pi-regulated transcriptional responses; (E) test the relevance of INPHORS for Pi homeostasis in mammalian cells.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INPHORS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INPHORS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More