Opendata, web and dolomites

ZoomDeep SIGNED

Zooming in on the core-mantle boundary

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ZoomDeep project word cloud

Explore the words cloud of the ZoomDeep project. It provides you a very rough idea of what is the project "ZoomDeep" about.

internal    heat    volcanic    resolution    enriched    impacting    imaging    image    deep    beneath    first    interface    interactions    seismic    successfully    compositional    fan    layering    techniques    transform    vigorous    frequency    suggestions    solid    newly    constraining    iron    450    variability    global    evolution    structures    physical    near    unclear    thermal    roots    seismological    slow    turning    cmb    material    tectonics    nature    geodynamo    innovative    thickness    maps    surface    dubbed    km    heavily    interact    local    dynamical    mantle    velocity    fundamental    responsible    silicate    inferred    questions    light    zoomdeep    mechanisms    technique    earth    heterogeneous    hotspots    layer    origin    volcanism    uncertain    disciplinary    boundary    upwellings    convection    transfer    made    patches    debated    stable    structure    coupling    dynamics    implications    significance    varies    liquid    core    unprecedented    plate   

Project "ZoomDeep" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙407˙784 €
 EC max contribution 1˙407˙784 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙407˙784.00

Map

 Project objective

The core-mantle boundary (CMB) is the interface between the liquid iron core and the silicate solid mantle, and is the most significant internal boundary of the Earth. The core and the mantle interact across the boundary through transfer of heat and material, and various coupling mechanisms. While the nature and variability of these interactions remains uncertain, they strongly affect the convection in the mantle, responsible for plate tectonics and intra-plate volcanism, as well as the much more vigorous convection in the core, responsible for the geodynamo. Constraining the interactions at the CMB is crucial to understanding physical processes in the deep Earth and the thermal, compositional, and dynamical evolution of the Earth. The CMB interactions are strongly controlled by heterogeneous structures on or near the boundary. On the mantle side, seismological imaging has observed slow velocity layering and patches, but their physical significance remains uncertain, and it is unclear whether they represent global or local features. Turning to the core, suggestions of a stable light-element-enriched layer have been made. The estimated thickness of such a layer varies from 40 to 450 km, and the origin of the inferred light elements is heavily debated. In ZoomDeep, I propose innovative seismic techniques to image the structure near the CMB with unprecedented resolution. One technique, dubbed 'the Frequency Fan', will be newly developed, while another technique has recently been successfully applied at the Earth's surface and will be adapted to the CMB. ZoomDeep will lead to the first high-resolution maps of the structures near the CMB and will specifically focus on the roots of mantle upwellings beneath volcanic hotspots. The implications of these maps on fundamental questions impacting core and mantle dynamics will be assessed in multi-disciplinary approaches. The results of this work will transform our understanding of the dynamics and evolution of the Earth.

 Publications

year authors and title journal last update
List of publications.
2019 A M van Stiphout, S Cottaar, A Deuss
Receiver function mapping of mantle transition zone discontinuities beneath Alaska using scaled 3D velocity corrections
published pages: , ISSN: 0956-540X, DOI: 10.1093/gji/ggz360
Geophysical Journal International 2020-01-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ZOOMDEEP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ZOOMDEEP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MuFLOART (2018)

Microbiological fluorescence observatory for antibiotic resistance tracking

Read More  

ImmUne (2019)

Towards identification of the unifying principles of vertebrate adaptive immunity

Read More  

ModGravTrial (2019)

Modified Gravity on Trial

Read More