Opendata, web and dolomites

CELLONGATE SIGNED

Unraveling the molecular network that drives cell growth in plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CELLONGATE project word cloud

Explore the words cloud of the CELLONGATE project. It provides you a very rough idea of what is the project "CELLONGATE" about.

dynamic    gene    precise    skeleton    epicenter    steering    massive    exemplified    vector    am    types    hydrostatic    pressure    physiological    profiles    differ    transcriptome    movements    individual    setup    thaliana    steer    depends    live    plant    imaging    strength    equipped    resolution    almost    orient    molecular    internal    root    regulation    plants    gravity    pressurized    unravel    consequently    elongation    methodology    phytohormone    correlating    microscopy    migrate    discovery    encased    arabidopsis    networks    turgor    organs    combine    acquisition    light    immobility    manipulation    protein    auxin    nutrient    gradients    move    wall    sculpture    mechanisms    platform    lab    migration    division    cells    occurs    genes    strikingly    size    map    roots    physiology    similarly    balance    regulator    strict    microfluidic    optimized    termination    optimize    cellular    consists    spatio    despite    mechanism    organ    window    orientation    discover    elusive    total    onset    effect    developmental    tip    unknown    temporal    bodies    animals    differential    cell    though    absence    chip    parallel    chart    central   

Project "CELLONGATE" data sheet

The following table provides information about the project.

Coordinator
UNIVERZITA KARLOVA 

Organization address
address: OVOCNY TRH 560/5
city: PRAHA 1
postcode: 116 36
website: www.cuni.cz

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Czech Republic [CZ]
 Total cost 1˙498˙750 €
 EC max contribution 1˙498˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERZITA KARLOVA CZ (PRAHA 1) coordinator 1˙498˙750.00

Map

 Project objective

Plants differ strikingly from animals by the almost total absence of cell migration in their development. Plants build their bodies using a hydrostatic skeleton that consists of pressurized cells encased by a cell wall. Consequently, plant cells cannot migrate and must sculpture their bodies by orientation of cell division and precise regulation of cell growth. Cell growth depends on the balance between internal cell pressure – turgor, and strength of the cell wall. Cell growth is under a strict developmental control, which is exemplified in the Arabidopsis thaliana root tip, where massive cell elongation occurs in a defined spatio-temporal developmental window. Despite the immobility of their cells, plant organs move to optimize light and nutrient acquisition and to orient their bodies along the gravity vector. These movements depend on differential regulation of cell elongation across the organ, and on response to the phytohormone auxin. Even though the control of cell growth is in the epicenter of plant development, protein networks steering the developmental growth onset, coordination and termination remain elusive. Similarly, although auxin is the central regulator of growth, the molecular mechanism of its effect on root growth is unknown. In this project, I will establish a unique microscopy setup for high spatio-temporal resolution live-cell imaging equipped with a microfluidic lab-on-chip platform optimized for growing roots, to enable analysis and manipulation of root growth physiology. I will use developmental gradients in the root to discover genes that steer cellular growth, by correlating transcriptome profiles of individual cell types with the cell size. In parallel, I will exploit the auxin effect on root to unravel molecular mechanisms that control cell elongation. Finally, I am going to combine the live-cell imaging methodology with the gene discovery approaches to chart a dynamic spatio-temporal physiological map of a growing Arabidopsis root.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CELLONGATE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CELLONGATE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More