Opendata, web and dolomites

LeukemiaEnviron SIGNED

SIGNALING PROPENSITY IN THE MICROENVIRONMENT OF B CELL CHRONIC LYMPHOCYTIC LEUKEMIA

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LeukemiaEnviron project word cloud

Explore the words cloud of the LeukemiaEnviron project. It provides you a very rough idea of what is the project "LeukemiaEnviron" about.

interactions    responsible    therapy    cells    cd20    utilized    receptor    universal    constantly    circulate    survival    first    reveal    engraftment    mechanisms    interaction    implication    signaling    animal    led    malignant    complicates    re    figure    mouse    lymph    inhibited    transplantable    obtain    mediated    microenvironment    chronic    proliferative    pro    regulation    proteins    samples    transferable    immune    interleukin    unknown    rituximab    mirnas    peripheral    influences    course    disease    primary    frequent    signalling    function    model    microenvironments    print    pdx    data    niches    regulator    blood    12    normal    dependency    il4    bcr    therapeutically    mir    nfkb    see    relevance    biology    29    stream    cell    therapeutic    microenvironmental    activation    times    signals    propensity    acts    therapies    lymphocytic    inhibitors    cd40    integrate    node    hypothesize    proliferation    leukemia    malignancies    vs    stable    cll    nodes    finger    adults   

Project "LeukemiaEnviron" data sheet

The following table provides information about the project.

Coordinator
Masarykova univerzita 

Organization address
address: Zerotinovo namesti 9
city: BRNO STRED
postcode: 60177
website: http://www.muni.cz

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Czech Republic [CZ]
 Total cost 1˙499˙990 €
 EC max contribution 1˙499˙990 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    Masarykova univerzita CZ (BRNO STRED) coordinator 1˙499˙990.00

Map

 Project objective

B cell chronic lymphocytic leukemia (CLL) is the most frequent leukemia in adults. CLL cells are characterized by their universal dependency on pro-survival and pro-proliferative signals from immune niches. To achieve this they constantly re-circulate between blood and lymph nodes, which is inhibited by novel microenvironment-targeting therapies such as “BCR inhibitors”. We aim to reveal how the malignant B cells change the propensity of their signalling pathways in response to the different microenvironments such as peripheral blood vs lymph node to obtain the proliferative signals. This is of major relevance for CLL, but also transferable to the biology of some other B cell malignancies and/or normal B cells. We analyzed the “finger print” of microenvironmental interactions in many CLL samples at various times during the disease course or during therapy. The obtained data led us to hypothesize on the mechanisms of regulation of signalling propensity of two pathways that are responsible for proliferation and survival of CLL cells, namely B Cell Receptor (BCR) signalling and signals from T-cells mediated by CD40/IL4. In aim 1 we hypothesize that CD20 is one of the key proteins involved in CLL cell activation, and influences BCR and interleukin signalling (see figure). This has important therapeutic implication since CD20 is used as a therapeutic target for 20 years (rituximab), but its function in CLL/normal B cells is unknown. In aim 2 we hypothesize that miR-29 acts a key regulator of T-cell signalling from CD40 and down-stream NFkB activation (see figure). This represents the first example of miRNAs‘ role in the propensity of T-cell interaction, and could be also utilized therapeutically. In aim 3 we will integrate our data on microenvironmental signaling (aim 12) and develop a first mouse model for PDX that would allow stable engraftment of primary CLL cells. Currently, CLL is non-transplantable to any animal model which complicates studies of its biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEUKEMIAENVIRON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEUKEMIAENVIRON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CountIce (2020)

A portable instrument (PINE) for the autonomous detection of atmospheric ice nucleating particles aimed at the research, global monitoring and cloud seeding markets

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

PATHOCODE (2020)

Molecular pathology of anti-viral T cell responses in the central nervous system

Read More