Explore the words cloud of the SUPERSPEC project. It provides you a very rough idea of what is the project "SUPERSPEC" about.
The following table provides information about the project.
Coordinator |
STOCKHOLMS UNIVERSITET
Organization address contact info |
Coordinator Country | Sweden [SE] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-10-01 to 2024-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | STOCKHOLMS UNIVERSITET | SE (STOCKHOLM) | coordinator | 1˙500˙000.00 |
Determining the origin of the elements is a fundamental quest in physics and astronomy. Most of the elements in the periodic table are believed to be produced by supernovae and kilonovae. However, this has for decades been little more than a prediction from theory. Now, with a dramatically changing observational situation and new modelling capabilities, it is within our reach to determine the nucleosynthesis production and structure in these transients. To really see what supernovae and kilonovae contain, we must study their spectra in the later so called nebular phase when the inner regions become visible. This project is aimed at establishing the first picture of the origin of elements by determining the yields from supernovae and kilonovae using such analysis. To do this, new spectral synthesis methods need to be developed considering the necessary microphysical (ejecta chemistry, r-process physics, time-dependent gas state) and macrophysical (3D radiation transport) processes to obtain sufficient accuracy. These tools will then be applied to the first 3D explosion simulations of these transients now becoming available. When applied to the growing library of data emerging from automated surveys and follow-up programs, as well to the recent first kilonova observations, this will provide a breakthrough in our understanding of these transients. This development will not only allow a determination of cosmic element production, but also allow tests of theories for stellar evolution, nucleosynthesis, and explosion processes. This will in turn have fundamental impact on several fields of astrophysics such as population synthesis, galactic chemical evolution modelling, and understanding of mass transfer in the progenitor systems. It has a strong connection to recent detections of stellar-mass black holes and merging neutron stars by gravitational waves.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUPERSPEC" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SUPERSPEC" are provided by the European Opendata Portal: CORDIS opendata.