Opendata, web and dolomites

BARINAFLD SIGNED

Using Bariatric Surgery to Discover Weight-Loss Independent Mechanisms Leading to the Reversal of Fatty Liver Disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BARINAFLD" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙499˙354 €
 EC max contribution 1˙499˙354 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 1˙499˙354.00

Map

 Project objective

Non-Alcoholic Fatty Liver Disease (NAFLD), a disease characterized by accumulation of lipid droplets in the liver, is the major precursor for liver failure and liver cancer, and constitutes a global health challenge. An estimated 25% of the adult population suffers from NAFLD, but no FDA approved drugs are available to treat this condition. Obesity is a major NAFLD risk factor and weight-loss improves disease severity in obese patients. Bariatric surgeries are an effective treatment for obesity when lifestyle modifications fail and often lead to improvement in NAFLD and type 2 diabetes. The overreaching objective of this proposal is to combine bariatric surgery in mice and humans with advanced molecular and computational analyses to discover novel, weight-loss independent mechanisms that lead to NAFLD alleviation, and harness them to treat NAFLD. In preliminary studies, I discovered that bariatric surgery clears lipid droplets from the livers of obese db/db mice without inducing weight-loss. Using metabolic and computational analysis, I found that bariatric surgery shifts hepatic gene expression and blood metabolome of post-bariatric patients to a new trajectory, distinct from lean or sick patients. Data analysis revealed the transcription factor Egr1 and one-carbon and choline metabolism to be key drivers of weight-loss independent effects of bariatric surgery. I will use two NAFLD mouse models that do not lose weight after bariatric surgery to characterize livers of mice post-surgery. Human patients do lose weight following surgery, therefore I will use computational methods to elucidate weight-independent pathways induced by surgery, by comparing livers of lean patients to those of NAFLD patients before and shortly after bariatric surgery. Candidate pathways will be studied by metabolic flux analysis and manipulated genetically, with the ultimate goal of reaching systems-levels understanding of NAFLD and identifying surgery-mimetic therapies for this disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BARINAFLD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BARINAFLD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More