Explore the words cloud of the TCRabX project. It provides you a very rough idea of what is the project "TCRabX" about.
The following table provides information about the project.
Coordinator |
CHARITE - UNIVERSITAETSMEDIZIN BERLIN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 264˙110 € |
EC max contribution | 264˙110 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2019 |
Duration (year-month-day) | from 2019-08-01 to 2022-07-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CHARITE - UNIVERSITAETSMEDIZIN BERLIN | DE (BERLIN) | coordinator | 264˙110.00 |
2 | MONASH UNIVERSITY | AU (VICTORIA) | partner | 0.00 |
Demographic change includes population ageing, and incidence rates begin to increase for many types of cancer in middle-aged and elderly people. Traditional cancer treatment includes surgery, chemotherapy, and radiation therapy, while tumour immunotherapy by T cell receptor (TCR) gene transfer represents an alternative form of treatment. The transfer of tumour-specific TCR genes into patient’s peripheral blood lymphocytes targets cancer specifically and effectively. But while patient-derived low-affinity TCRs do not show therapeutic activity, optimal-affinity TCRs, as isolated from newly-generated antigen-negative humanized mice with a diverse human TCR repertoire, can effectively delay tumour regression. X-ray crystallography is a powerful tool of structural biology, which helps researchers to identify the three-dimensional (3D) structures of biological macromolecules such as TCRs complexed to their cognate peptide-loaded major histocompatibility complex (pMHC) molecules. Recent research uncovered the docking topologies of naturally selected TCRs, but therapeutically efficient optimal-affinity TCRs recognizing tumour-associated self-antigens, have not been analysed to date. The exceptional specificity of TCRs is determined by three complementarity-determining regions (CDRs) of the TCR alpha- and beta-chains. Biomedical research on TCR gene therapy and design of future clinical trials will hugely benefit from the identification of CDR-mediated contact points made between therapeutic TCRs and the pMHC on their target cells. TCRabX is an interdisciplinary research project investigating the 3D structures of 13 TCRs complexed to MHC-I or MHC-II, respectively. It connects innovative clinical immunology research in Berlin/Germany and world-class structural biology research in Melbourne/Australia. The proposed research will enhance the health and well-being of citizens in Europe and worldwide by supporting the advancement of cancer immunotherapy approaches.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TCRABX" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TCRABX" are provided by the European Opendata Portal: CORDIS opendata.