Opendata, web and dolomites

HYDROMA SIGNED

Origin and evolution of organic matter in carbonaceous chondrites: influence of hydrothermal processes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HYDROMA" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙994˙351 €
 EC max contribution 1˙994˙351 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙994˙351.00

Map

 Project objective

Carbonaceous chondrites (CC) are believed to be fragments of carbonaceous asteroids from the asteroidal belt. They contain up to 4wt% of organic compounds, showing a huge diversity and extremely variable H and N isotope compositions. These isotope compositions can relate to synthesis environments but the exact nature of the processes that influenced the formation of organic compounds in CC remains unresolved. Part of the issue comes from the occurrence of hydrothermal alteration on the chondrites that exhibit the largest content in organic matter. Hydrothermalism may have modified the chemical and isotopic signature of organic molecules, but the extent of these modifications is not yet constrained, leaving a lot of uncertainties on the interpretation of H and N isotope ratios.

The HYDROMA project aims at determining the effects of hydrothermalism on the D/H and 15N/14N ratios of organic molecules in CC. This project will rely on an innovative experimental approach to quantify isotopic exchange of hydrogen and nitrogen between organic compounds and the hydrothermal fluid. HYDROMA will provide a self-consistent determination of the extent and kinetics of the modification of the isotopic signatures recorded in organic molecules. Hence, it will improve the understanding of H and N-isotope systematics of organic matter in CC. HYDROMA will permit using isotope composition of organic compounds to constrain the hydrothermal events (duration, temperature) on carbonaceous asteroids. This multidisciplinary research will shed new light on the origin and reprocessing of organic matter in the early solar system, and its delivery to rocky planets, including the Earth, thus disclosing the origin of prebiotic molecules on our planet.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYDROMA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYDROMA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More