Explore the words cloud of the PRODUCE-H2 project. It provides you a very rough idea of what is the project "PRODUCE-H2" about.
The following table provides information about the project.
Coordinator |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address contact info |
Coordinator Country | France [FR] |
Total cost | 150˙000 € |
EC max contribution | 150˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-PoC |
Funding Scheme | ERC-POC |
Starting year | 2019 |
Duration (year-month-day) | from 2019-05-01 to 2020-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES | FR (PARIS 15) | coordinator | 150˙000.00 |
Hydrogen (H2) generated from renewable energies, such as solar and wind, and water has a huge potential as a carbon-free energy vector which can be exploited on demand through fuel cell technologies. Proton-exchange membrane electrolysers (PEMEL) are a mature technology that can be coupled with intermittent renewable power sources. However their wide deployment still depends on innovative breakthroughs regarding the design of alternative catalysts avoiding the use of precious metals and fulfilling three main characteristics: sustainability, cost-effectiveness and stability. In the “PhotocatH2ode” ERC Frontier Research Starting Grant (consolidator stream), we explored a coordination polymer structure for amorphous molybdenum sulfide (a-MoSx), refined the understanding of its catalytic mechanism (Artero and coll., Nature material 2016) and developed strategies to remedy reductive corrosion issues that so far limited the implementation of such earth-abundant H2 evolution catalysts in PEMEL. We aim at exploiting these new findings in PRODUCE-H2, an ERC Proof of Concept project which proposes to (1) optimize the formulation of these catalytic materials and assemble them in polymer-membranes, (2) assessing their performance and quantifying their stability during long-term tests performed under realistic operating conditions, (3) upscaling their production thanks to a newly developed synthetic process and (4) implementing them in a noble-metal-free PEMEL prototype. PRODUCE-H2 will exploit pre-existing and newly created intellectual property with the aim of proposing a cost-effective industrial solution for PV-coupled on-site hydrogen production. This project will be in close collaboration with Toyota Motor Europe who have been selling fuel cell cars since 2015.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRODUCE-H2" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "PRODUCE-H2" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreDiscovering a novel allergen immunotherapy in house dust mite allergy tolerance research
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More