Opendata, web and dolomites

BRITE SIGNED

Elucidating the molecular mechanisms underlying brite adipocyte specification and activation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BRITE" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙552˙620 €
 EC max contribution 1˙552˙620 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙552˙620.00

Map

 Project objective

Brown adipocytes can dissipate energy in a process called adaptive thermogenesis. Whilst the classical brown adipose tissue (BAT) depots disappear during early life in humans, cold exposure can promote the appearance of brown-like adipocytes within the white adipose tissue (WAT), termed brite (brown-in-white). Increased BAT activity results in increased energy expenditure and has been correlated with leanness in humans. Hence, recruitment of brite adipocytes may constitute a promising therapeutic strategy to treat obesity and its associated metabolic diseases. Despite the beneficial metabolic properties of brown and brite adipocytes, little is known about the molecular mechanisms underlying their specification and activation in vivo. This proposal focuses on understanding the complex biology of thermogenic adipocyte biology by studying the epigenetic and transcriptional aspects of WAT britening and BAT recruitment in vivo to identify pathways of therapeutic relevance and to better define the brite precursor cells. Specific aims are to 1) investigate epigenetic and transcriptional states and heterogeneity in human and mouse adipose tissue; 2) develop a novel time-resolved method to correlate preceding chromatin states and cell fate decisions during adipose tissue remodelling; 3) identify and validate key (drugable) epigenetic and transcriptional regulators involved in brite adipocyte specification. Experimentally, I will use adipose tissue samples from human donors and mouse models, to asses at the single-cell level cellular heterogeneity, transcriptional and epigenetic states, to identify subpopulations, and to define the adaptive responses to cold or β-adrenergic stimulation. Using computational methods and in vitro and in vivo validation experiments, I will define epigenetic and transcriptional networks that control WAT britening, and develop a model of the molecular events underlying adipocyte tissue plasticity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRITE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRITE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More