Opendata, web and dolomites

DeCoCt SIGNED

Knowledge based design of complex synthetic microbial communities for plant protection

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DeCoCt" data sheet

The following table provides information about the project.

Coordinator
EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Organization address
address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074
website: www.uni-tuebingen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙925˙500 €
 EC max contribution 1˙925˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) coordinator 1˙925˙500.00

Map

 Project objective

'Complex microbial communities ('microbiota') that populate surfaces of higher organisms critically impact health of their hosts: They contribute to vital functions such as host fitness, nutrient acquisition, stress tolerance and pathogen resistance but are, at the same time, reservoirs for facultative pathogens or can promote pathogenesis. How and why communities shift from a beneficial to a detrimental state is largely unknown and we are far from utilizing identified mechanisms. In order to cure detrimental microbiota, that were damaged or reverted through stress factors including previous diseases, decoding the complex processes governing microbiota dynamics is a key challenge. To develop durable probiotics, communal stability or the ability of a community to return to a steady state following perturbation is a key factor. Our lab has broad expertise in studying microbial communities through lab experiments and analyzing factors that shape the microbiota of Arabidopsis thaliana plants under natural conditions and common garden experiments. We have discovered a hierarchical order in microbial community networks with hub microbes as key elements. A recent breakthrough was the discovery of microbial taxa that persist throughout the life of A. thaliana plants and their importance in network stability. In this project we will use our expertise to identify key stability factors and drivers of communal dynamics to reconstitute synthetic communities. How to seed microbial communities that develop into functional probiotics is a key challenge. We will use knowledge based assembly of complex communities to seeds protective microbiota. We will challenge those through pathogens and abiotic factors to refine and test the predictive power of our analyses. Therefore, DeCoCt represents a highly innovative approach that holds the potential to gain novel insights beyond the current scope of microbiota and probiotics research.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DECOCT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DECOCT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More