Opendata, web and dolomites

BIOCONTACT SIGNED

Contact Mechanics of Soft and Complex Biological Tissues

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BIOCONTACT project word cloud

Explore the words cloud of the BIOCONTACT project. It provides you a very rough idea of what is the project "BIOCONTACT" about.

mean    uses    numerical    inverse    prosthetic    lens    constitutive    tissues    relies    soft    materials    biocontact    intensified    newly    last    framework    ready    lubricated    tools    scientific    complete    behavior    optimization    separation    mechanics    surgical    replicate    societal    tuned    interfaces    prevention    laws    industrial    chemo    interactions    schemes    occurring    solving    molecular    viscoelastic    requiring    individual    procedure    models    vision    layered    lubrication    decade    tool    deep    contact    class    layers    tackle    methodology    theory    medical    innovative    suited    first    that    benefits    zones    bedsores    fluids    reynolds    descriptions    biological    capture    applicable    relevance    rely    bio    linear    liquid    engineering    tissue    mentioned    newtonian    potentials    material    hospital    adopting    interface    compatibility    atomistic    pursuing    solver    contacts    model    mechanical    phenomena    local    interaction    experimental    implants    coupling    probe    boundary    captured    solid   

Project "BIOCONTACT" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

In the last decade, a number of medical and bio-engineering challenges, requiring a deep understanding of the phenomena occurring at biological interfaces, have intensified scientific interest in the field of biological contact mechanics. BIOCONTACT will develop an innovative methodology to tackle bio-lubricated contacts involving soft tissues in the presence of complex fluids, enhancing the understanding of these interactions, by pursuing new models and numerical methodologies, specifically suited for this class of problem. This approach is key to provide long-term societal benefits by solving long-standing issues including the prevention of hospital bedsores, the mechanical compatibility of prosthetic implants or contact lens, and the optimization of surgical procedures and tools. In particular, my vision is to first build a mechanical model for biological soft tissues that specifically uses constitutive laws for multi-layered linear viscoelastic materials. This model will be then implemented in a newly developed contact mechanics solver, based on improved Boundary Element Method schemes that I have recently proposed, and that will be able to capture specific chemo-mechanical local responses adopting mean potentials that rely on atomistic and molecular descriptions of the interface. In the framework of inverse analysis, the material properties of individual layers will be tuned to best replicate the experimental behavior captured using an innovative procedure. This relies on a new scale separation methodology and is able to probe different zones and layers within the tissue. Finally, in order to provide a complete and widely applicable tool, solid-liquid interaction will be addressed by coupling the contact model with a lubrication model, based on non-Newtonian Reynolds theory. The development of this ready-to-use numerical tool will foster the uptake of my proposed methodologies for use in the above mentioned complex cases of industrial and medical relevance.

 Publications

year authors and title journal last update
List of publications.
2019 N. Menga, D. Dini, G. Carbone
Tuning the periodic V-peeling behavior of elastic tapes applied to thin compliant substrates
published pages: 105331, ISSN: 0020-7403, DOI: 10.1016/j.ijmecsci.2019.105331
International Journal of Mechanical Sciences 2020-04-11
2019 Nicola Menga, Francesco Bottiglione, Giuseppe Carbone
The Indentation Rolling Resistance in Belt Conveyors: A Model for the Viscoelastic Friction
published pages: 58, ISSN: 2075-4442, DOI: 10.3390/lubricants7070058
Lubricants 7/7 2020-04-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOCONTACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOCONTACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More