Opendata, web and dolomites

DiLeBaCo SIGNED

Distributed Learning-Based Control for Multi-Agent Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DiLeBaCo" data sheet

The following table provides information about the project.

Coordinator
KUNGLIGA TEKNISKA HOEGSKOLAN 

Organization address
address: BRINELLVAGEN 8
city: STOCKHOLM
postcode: 100 44
website: www.kth.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 219˙875 €
 EC max contribution 219˙875 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-10-07   to  2022-04-06

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KUNGLIGA TEKNISKA HOEGSKOLAN SE (STOCKHOLM) coordinator 219˙875.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

Multi-agent systems offer a great potential to improve the quality of modern society life. In the near future fleets of autonomous cars will be able to reduce traffic congestion and fuel consumption while increasing road safety. With almost half of all freight being transported by road, it makes up approximately a quarter of the total EU energy consumption and accounts for 18% of the greenhouse emissions. Fuel reduction in this area will have a significant impact on the environment. One way to achieve such reductions is through platooning where heavy-duty vehicles drive close to each other to reduce their aerodynamic drag and thus increase their fuel efficiency. While autonomous driving and platooning are areas of active research, open challenges arise in complex traffic scenarios with human interactions. Another challenge is that hierarchical control design with several different layers is required. The specific goals of the project are to develop novel algorithms for the control of safety-critical multi-agent systems in real-world scenarios, to understand the role of local informational constraints on the performance and safety of such systems and to design incentives for the individual agents that lead to a desired coordination of a fleet. This way global objectives will be optimized while accounting for complex traffic situations. The scientific contribution lies in combining and extending recent results from distributed predictive control, statistical learning and game theory as well as understanding the role of informational constraints in distributed learning-based control of multi-agent systems. The developed methods will have a high impact on both industry and society. In particular, the project will enable platooning in more complex scenarios, which has the potential to reduce fuel consumption of the transportation sector by up to 10% and thus make a significant contribution to the overall energy consumption and greenhouse emissions of the EU.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DILEBACO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DILEBACO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More