Opendata, web and dolomites

High-Risk-No-Gain SIGNED

A new approach to design wireless receivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "High-Risk-No-Gain" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT TWENTE 

Organization address
address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB
website: www.utwente.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙475˙665 €
 EC max contribution 2˙475˙665 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE NL (ENSCHEDE) coordinator 2˙475˙665.00

Map

 Project objective

While most analog functions have been taken over by their digital counterparts, radio receivers today are complex analog electronic circuits. They include amplifier circuits to provide amplification of the weak antenna signals. Ideally the amplifiers provide linear gain, but unfortunately the amplifiers exploiting transistors are inherently nonlinear, causing fundamental problems if large unwanted signals are received simultaneously with weak desired signals. This is why a radio receiver is a complex combination of many analog circuits: filters, mixers and amplifiers are placed between the antenna and the analog-to-digital converter (ADC), making receivers bulky, expensive and consume a lot of energy. The breakthrough concept of this program is to completely refrain from active linear amplifiers and thus have no active linear gain in a receiver. This way we avoid the fundamental problems in amplifiers and we minimize the analog hardware between the antenna and ADC, thus drastically simplifying the radio architecture. This program aims at connecting the ADC to the antenna, with just a separation by a so-called “N-path filter”. As pioneered amongst others by myself, N-path filters are simple structures without amplification and have recently become popular for wireless applications after being “forgotten” for many decades. Research work will focus on: 1) an N-path filter antenna interface, with extreme selectivity; 2) an ultra-low-noise ADC being able to convert the unamplified antenna signal; 3) a digital reflector to reflect unwanted signals arriving at the antenna; 4) precise timing circuits with far-beyond state-of-the-art timing accuracy to clock the N-path filter. I will focus on two different application areas: high-end receivers for high data rates in a crowded spectrum and ultra-low power receivers for (battery-less) sensor networks. My goal is to design fully integrated receivers on a chip, without the bulky and expensive external components needed today.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIGH-RISK-NO-GAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIGH-RISK-NO-GAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More