Opendata, web and dolomites

SCHENGEN-ROOT SIGNED

'Filling the gaps' in the Schengen pathway for plant root Casparian strip integrity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCHENGEN-ROOT project word cloud

Explore the words cloud of the SCHENGEN-ROOT project. It provides you a very rough idea of what is the project "SCHENGEN-ROOT" about.

domain    sgn    appear    intend    ligand    aligned    membrane    cs    embryonic    insights    function    plants    activated    continuous    modules    functions    specificity    safeguard    molecular    sub    appears    cuticle    sophisticated    transducers    off    pollen    starts    barriers    tissues    casparian    organs    understand    mapks    cifs    diffusion    potentially    homeostasis    missing    co    water    fusion    receptor    coat    thirdly    elusive    mechanism    broad    mapk    barrier    engineering    forge    give    lignification    central    inducible    signalling    establishes    elucidating    additional    branched    resolve    identification    sgn3    fuse    share    receptors    govern    seal    secondly    unknown    mechanistic    perceives    model    perfect    basis    monitor    linear    cascades    microdomains    first    downstream    characterise    uncover    regulated    clarify    localisation    nutrient    gaps    ensures    details    diverse    root    tissue    integrity    biological    strip    regulate    initiated   

Project "SCHENGEN-ROOT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE LAUSANNE 

Organization address
address: Quartier Unil-Centre Bâtiment Unicentre
city: LAUSANNE
postcode: 1015
website: www.unil.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 203˙149 €
 EC max contribution 203˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE LAUSANNE CH (LAUSANNE) coordinator 203˙149.00

Map

 Project objective

Plants have developed sophisticated barriers in various tissues and organs to safeguard integrity. To monitor barrier integrity, plants appear to have evolved similar systems that share signalling modules. The receptor/ligand signalling pathway initiated by SGN3/CIFs establishes the integrity of the Casparian strip (CS), a root diffusion barrier that is essential for controlling nutrient and water homeostasis. The CS starts off as aligned microdomains that eventually fuse to forge a continuous barrier. The SGN pathway is crucial to “find and seal gaps” between the microdomains. However, the mechanism that ensures perfect domain fusion is not well understood.

Here, I aim to uncover missing mechanistic details and characterise central unknown elements in a proposed, branched SGN pathway. I intend to identify potential SGN3 co-receptors and additional membrane transducers, and to investigate the elusive role of MAPKs during CS formation. The findings will be crucial to resolve pathway features that the current linear model cannot explain. First, identifying co-receptors is necessary to understand how SGN3 is activated. SGN3 also appears to be involved in embryonic cuticle and pollen coat formation. Therefore, co-receptor identification would clarify whether SGN3 perceives the same or different ligand to govern distinct barrier formation processes. Secondly, identifying additional transducers will provide a molecular basis for understanding two potentially distinct lignification processes regulated by SGN3. This will provide broad insights into how receptors regulate specific sub-functions. Thirdly, MAPK cascades are activated downstream of many receptor/ligand pathways. Elucidating their function in the SGN pathway will give insights into diverse biological processes. Overall, this project will provide a key model to study specificity and localisation of signalling modules, leading towards tissue-specific and inducible barrier engineering in plants.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCHENGEN-ROOT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCHENGEN-ROOT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

ENGECON (2019)

Engaged Economists. Politics, profession and economics in the left-wing commitment, 1930s-1960s.

Read More  

GWFP (2019)

Geometric study of Wasserstein spaces and free probability

Read More