Explore the words cloud of the MEDIVAC project. It provides you a very rough idea of what is the project "MEDIVAC" about.
The following table provides information about the project.
Coordinator |
ONCOIMMUNITY AS
Organization address contact info |
Coordinator Country | Norway [NO] |
Total cost | 3˙143˙437 € |
EC max contribution | 2˙200˙406 € (70%) |
Programme |
1. H2020-EU.3. (PRIORITY 'Societal challenges) 2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs) 3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies) |
Code Call | H2020-SMEInst-2018-2020-2 |
Funding Scheme | SME-2 |
Starting year | 2019 |
Duration (year-month-day) | from 2019-05-01 to 2021-10-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ONCOIMMUNITY AS | NO (OSLO) | coordinator | 2˙200˙406.00 |
Cancer is arguably the most feared of all diseases, destroying lives regardless of the age of its victims. Immunotherapies are currently regarded as the most promising avenue to delivering the holy grail of medicine i.e. providing a cure for cancer. Despite their Nobel-winning status, personalisation of immunotherapies remains akey challenge to which no cost-effective solution currently exists. Current methods for identifying the immunogenic neoantigens required to design patient-specific cancer vaccines typically utilize next generation sequencing (NGS) analysis of DNA and RNA coupled with wet lab methods (e.g. spectroscopy). However, these approaches are time consuming to perform, expensive and not readily scalable–which currently prohibits the mass roll-out of personalised cancer vaccines.
Despite the fact that intensive research has been dedicated to developing prediction algorithms which can identify immunogenic neoantigens from NGS data from tumor samples, their accuracy has not yet reached a competitive performance compared to wet lab methods. To bridge this gap, OncoImmunity (OI) has developed a comprehensive machine learning framework, trained using public and proprietary datasets to optimise performance. Once fed with patient NGS data from healthy and tumor tissue, OI’s algorithms identifies the most clinically relevant neoantigen candidates, with an unmatched accuracy (4-fold increase of prediction accuracy), which can be subsequently engineering into personalised vaccine cancer constructs.
Considering the potential of personalised therapy within cancer immunotherapy, OI’s core technology meets all the requirements to become a key enabling technology, providing cost-effective, scalable and sensitive identification of clinically relevant targets for vaccine development. Thus, it has the potential to serve as a cornerstone to revolutionize the fight against cancer – while untapping an immense business opportunity to fuel our company’s growth.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MEDIVAC" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MEDIVAC" are provided by the European Opendata Portal: CORDIS opendata.