Explore the words cloud of the MetALS project. It provides you a very rough idea of what is the project "MetALS" about.
The following table provides information about the project.
Coordinator |
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 162˙806 € |
EC max contribution | 162˙806 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-10-01 to 2021-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN | DE (MUENCHEN) | coordinator | 162˙806.00 |
Background: Exposure to toxic metals are proposed as risk factors for amyotrophic lateral sclerosis (ALS). Despite this, evidence remains mixed, with only evidence for lead exposure supported by recent meta-analysis. Many studies neglected that biomarkers may be affected by kidney and liver function. Additionally, the heat shock protein (HSP) response is triggered by toxic metal exposures, and there is evidence for altered HSP metabolism in ALS. Methods: Using available samples (105 ALS cases, 307 controls), blood HSP’s and toxic metal exposures will be measured primarily in urine (inorganic Hg, lead, chromium, aluminium, selenium, zinc, cadmium, copper and manganese). Confounding variables such as kidney and liver function, and bone turnover will be measured. In addition, prospective recruitment of a further 100 cases and 100 controls will be carried out. For prospectively enrolees, repeat blood and urine samples will be taken three-monthly. Statistical analysis: Multivariable logistic regression will be used to compare HSP’s at baseline, while Bayesian models will be used to model correlations between HSP’s and multiple toxic metals. Longitudinal trends will be modelled using Bayesian mixed effects models. Ordinary differential equations will be used to construct elimination kinetics models. Power calculations indicate 90% power to detect an odds ratio of 2.0 at baseline, and 87% to detect longitudinal differences in trend of 15% or more between cases and controls. Impact: MetALS will employ new methodology to generate fresh insights into the role of toxic metals in ALS. MetALS will confirm or refute the finding of HSP’s as biomarkers in ALS, and provide the first insights into longitudinal behaviour of HSP’s as the disease progresses. MetALS will also provide the first combined study of both HSP’s and toxic metal exposure in an ALS cohort. These novel enquiries are expected to provide fresh insights into HSP’s and toxic metal metabolism in ALS.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METALS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "METALS" are provided by the European Opendata Portal: CORDIS opendata.
Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells
Read MoreAffective work-related daily events, and changing characteristics of the work context: New challenges for management practices to deliver employees’ well-being and workplace performance
Read More