Opendata, web and dolomites

3DCanPredict SIGNED

Predicting clinical response to anticancer drugs using 3D-bioprinted tumor models for personalized therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DCanPredict project word cloud

Explore the words cloud of the 3DCanPredict project. It provides you a very rough idea of what is the project "3DCanPredict" about.

animal    scaffold    biophysics    preclinical    invest    personalized    cells    evaluation    interactions    patient    brain    consist    tissue    offers    poc    bioprinted    dishes    flow    benefit    tumor    hurdle    tumors    adjacent    form    toxicity    reduce    scans    clinical    decrease    progression    constructed    responsiveness    societal    designed    therapies    powerful    screening    predictive    power    cultured    metastasis    models    hydrogels    structure    strategies    model    indicate    potentially    predict    ct    techniques    anticancer    stromal    patients    attractive    solely    pharmaceutical    companies    time    replacing    library    microenvironment    heavily    generating    mimic    physio    mixed    pump    predicting    3d    2d    translational    drug    successful    types    create    significantly    origin    biopsy    cell    reproducible    platform    basis    tools    co    serum    functional    suits    plastic    resembling    grow    vascularized    resemble    limit    critical    connected    mri    hence    cancer    standard    mechanical    vessels    treatment    organ    drugs    biotech    pathological    ecosystem    rapid    business    printed    save   

Project "3DCanPredict" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 150˙000.00

Map

 Project objective

Predicting clinical response to novel and existing anticancer drugs remains a major hurdle for successful cancer treatment. Studies indicate that the tumor ecosystem, resembling an organ-like structure, can limit the predictive power of current therapies that were evaluated solely on tumor cells. The interactions of tumor cells with their adjacent microenvironment are required to promote tumor progression and metastasis, determining drug responsiveness. Such interactions do not form in standard research techniques, where cancer cells grow on 2D plastic dishes. Hence, there is a need to develop new cancer models that better mimic the physio-pathological conditions of tumors. Here, we create 3D-bioprinted tumor models based on a library of hydrogels we developed as scaffold for different tumor types, designed according to the mechanical properties of the tissue of origin. As PoC, we bioprinted a vascularized 3D brain tumor model from brain tumor cells co-cultured with stromal cells and mixed with our hydrogels, that resemble the biophysics of the tumor and its microenvironment. Our patient-derived models consist of cells from a biopsy, constructed according to CT/MRI scans, and include functional vessels allowing for patients' serum to flow when connected to a pump. These models will facilitate reproducible, reliable and rapid results, determining which treatment suits best the specific patient's tumor. Taken together, this 3D-printed model could be the basis for potentially replacing cell and animal models. We predict that this powerful platform will be used in translational research for preclinical evaluation of new therapies and for clinical drug screening, which will save critical time, reduce toxicity and significantly decrease costs generating a major societal benefit. Our platform offers a highly attractive business case, as pharmaceutical and biotech companies heavily invest in preclinical predictive tools for novel personalized drug screening strategies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DCANPREDICT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DCANPREDICT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOBETA (2020)

Motor cortical beta bursts for movement planning and evaluation: Mechanisms, functional roles, and development

Read More  

ECOLBEH (2020)

The Ecology of Collective Behaviour

Read More  

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More