Opendata, web and dolomites

GLISS SIGNED

Gliding epitaxy for inorganic space-power sheets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLISS project word cloud

Explore the words cloud of the GLISS project. It provides you a very rough idea of what is the project "GLISS" about.

extraction    decreased    translational    release    limited    interaction    films    innovation    coverglass    carriers    rigid    services    epitaxially    despite    power    selective    electronic    2d    pv    heavy    intrinsic    substrates    exhibits    structures    radiation    thin    epitaxial    hot    current    surface    drive    universal    bonding    grown    damage    tolerance    suggesting    unlimited    registry    ranging    fabrication    substrate    form    glide    lightweight    monolayers    equilibrium    mechanical    architecture    removing    geometry    satellite    afforded    accelerate    multijunction    device    engineering    expensive    efficient    layer    generation    crystal    thick    modern    nanophotonic    wafer    carrier    fundamental    reuse    pristine    global    energy    prospect    provides    rates    prevent    provision    economically    scalable    sustainable    interface    free    designed    structure    ultra    restrictions    nm    enhancement    deposited    rebalance    nucleates    underlying    protective    operation    panels    demonstrated    lt    realizing    photovoltaic    technologies    flexible    efficiency    film    steady    launch   

Project "GLISS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙797˙789 €
 EC max contribution 1˙797˙789 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙797˙789.00

Map

 Project objective

Current satellite technologies are limited by the photovoltaic (PV) panels they require for power generation. Despite steady advances in efficiency afforded by modern III-V multijunction PV, these large, rigid panels are expensive to produce and launch due to their heavy on-wafer architecture and thick protective coverglass, which is necessary to prevent radiation damage. I will develop and demonstrate ultra-thin (<100 nm) III-V PV, for highly efficient, lightweight, and flexible satellite PV provision. Decreased costs will help accelerate universal availability of satellite services, essential for sustainable global development, and removing PV form factor restrictions will drive innovation in satellite design.

Realizing this goal will require a translational program of research, ranging from fundamental design parameters to scalable fabrication methodologies. I recently demonstrated that the ultra-thin form factor exhibits intrinsic radiation tolerance, suggesting the prospect of a coverglass free, flexible system. I will target high efficiency in this geometry by engineering the device architecture to rebalance carrier interaction rates to support generation of non-equilibrium hot-carriers through the use of nanophotonic structures for strong E-field enhancement. The electronic structure will be designed for energy selective hot-carrier extraction, allowing highly efficient operation. Scalable fabrication will be achieved via development of a novel crystal growth method, in which III-V films are grown epitaxially on 2D monolayers. The 2D interface will prevent strong bonding between the deposited layer and an underlying growth substrate, which provides registry information to the crystal as it nucleates. The epitaxial layer will be free to glide across the growth surface during film formation, allowing the mechanical release of pristine films and the unlimited reuse of the growth substrates, enabling scalable, economically viable production of this new device.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLISS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLISS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More