Opendata, web and dolomites

GLISS SIGNED

Gliding epitaxy for inorganic space-power sheets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLISS project word cloud

Explore the words cloud of the GLISS project. It provides you a very rough idea of what is the project "GLISS" about.

thin    sustainable    protective    carriers    damage    realizing    selective    films    exhibits    film    services    pristine    satellite    steady    epitaxially    efficient    structures    rebalance    accelerate    grown    equilibrium    fundamental    geometry    layer    monolayers    substrates    interaction    panels    rigid    photovoltaic    ranging    suggesting    crystal    glide    current    energy    reuse    unlimited    economically    coverglass    power    form    technologies    engineering    registry    architecture    innovation    rates    structure    wafer    translational    release    removing    electronic    substrate    nucleates    ultra    limited    multijunction    drive    modern    designed    restrictions    despite    fabrication    underlying    generation    free    lt    scalable    enhancement    epitaxial    tolerance    2d    launch    hot    deposited    carrier    prevent    pv    radiation    lightweight    expensive    provides    efficiency    global    interface    mechanical    afforded    device    bonding    flexible    surface    thick    prospect    operation    provision    decreased    demonstrated    intrinsic    universal    nm    heavy    extraction    nanophotonic   

Project "GLISS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙797˙789 €
 EC max contribution 1˙797˙789 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙797˙789.00

Map

 Project objective

Current satellite technologies are limited by the photovoltaic (PV) panels they require for power generation. Despite steady advances in efficiency afforded by modern III-V multijunction PV, these large, rigid panels are expensive to produce and launch due to their heavy on-wafer architecture and thick protective coverglass, which is necessary to prevent radiation damage. I will develop and demonstrate ultra-thin (<100 nm) III-V PV, for highly efficient, lightweight, and flexible satellite PV provision. Decreased costs will help accelerate universal availability of satellite services, essential for sustainable global development, and removing PV form factor restrictions will drive innovation in satellite design.

Realizing this goal will require a translational program of research, ranging from fundamental design parameters to scalable fabrication methodologies. I recently demonstrated that the ultra-thin form factor exhibits intrinsic radiation tolerance, suggesting the prospect of a coverglass free, flexible system. I will target high efficiency in this geometry by engineering the device architecture to rebalance carrier interaction rates to support generation of non-equilibrium hot-carriers through the use of nanophotonic structures for strong E-field enhancement. The electronic structure will be designed for energy selective hot-carrier extraction, allowing highly efficient operation. Scalable fabrication will be achieved via development of a novel crystal growth method, in which III-V films are grown epitaxially on 2D monolayers. The 2D interface will prevent strong bonding between the deposited layer and an underlying growth substrate, which provides registry information to the crystal as it nucleates. The epitaxial layer will be free to glide across the growth surface during film formation, allowing the mechanical release of pristine films and the unlimited reuse of the growth substrates, enabling scalable, economically viable production of this new device.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLISS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLISS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

E-DURA (2018)

Commercialization of novel soft neural interfaces

Read More