Opendata, web and dolomites

DEEP-RADAR SIGNED

Learning efficient millimeter wave radar imaging for autonomous vehicles

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DEEP-RADAR project word cloud

Explore the words cloud of the DEEP-RADAR project. It provides you a very rough idea of what is the project "DEEP-RADAR" about.

multiple    transmit    2026    automotive    millimeter    ratio    signal    patterns    2050    sufficient    hitting    overcome    significantly    similarities    image    despite    physics    reconstruction    imaging    underlying    costly    compromising    input    methodology    moving    40    cagr    pipeline    viability    maintaining    grow    parts    smaller    autonomous    billion    learned    array    shorter    industry    demonstrated    demonstrating    requirement    ultrasonography    driving    spatial    transmits    reduce    receivers    485    mathematical    ecosystem    radars    almost    alternative    containing    reducing    entire    halve    accurate    channels    quality    cars    relying    noise    commercial    mimo    adverse    antennas    transmitting    technologies    decade    weakness    weather    vehicle    output    digital    rate    expensive    proof    learning    optical    imperative    pulses    images    restricted    ultrasound    description    sensing    penetrate    self    reading    insufficient    frame    modalities    prohibitively    resolution    share    configuration    trillion    temporal    transmitted    radar    consensus    protocols    phased    velocity    conceptual    intend    shape    wave    attractive    receiver    medical    exceeding    receive   

Project "DEEP-RADAR" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 150˙000.00

Map

 Project objective

The emerging autonomous vehicle ecosystem is expected to grow with an almost 40% CAGR in the next decade hitting €485 billion by 2026 and exceeding €6 trillion in 2050. There is wide industry consensus that improved long-range depth sensing modalities are imperative for the viability of self-driving cars. State-of-the-art optical technologies are still prohibitively expensive, have insufficient temporal and spatial resolution, do not provide an accurate velocity reading, and are restricted to a shorter range in adverse weather conditions. Millimeter wave multiple-input multiple-output (MIMO) radars are an attractive alternative relying on a phased array of transmitting antennas and digital receivers, containing no moving parts, and able to penetrate adverse weather conditions. The weakness of this technology is the costly requirement for a large number of receiver channels to achieve sufficient spatial resolution. We will apply our novel methodology recently developed for medical imaging to overcome this challenge.

We have demonstrated that learning the entire imaging pipeline in medical ultrasonography, including the shape of the transmitted pulses and the configuration of the receivers allows reducing the number of transmits by a factor of 3, while maintaining image quality comparable to traditional high-frame rate imaging protocols. Despite the different underlying physics, ultrasound and radar imaging share many conceptual similarities and have a similar mathematical description. Here, we intend to develop a proof-of-concept MIMO radar system demonstrating that by using the learned transmit patterns and image reconstruction pipeline, it is possible to halve the number of receive channels without compromising the image resolution and signal-to-noise ratio. Maintaining high resolution images using a smaller number of receiver channels will significantly reduce the cost of this technology and increase the commercial viability of automotive MIMO radars.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEP-RADAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEP-RADAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

TransReg (2019)

Transgenerational epigenetic inheritance of cardiac regenerative capacity in the zebrafish

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More