Opendata, web and dolomites

SPRING SIGNED

Scalable Production and Integration of Graphene

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SPRING" data sheet

The following table provides information about the project.

Coordinator
APPLIED NANOLAYERS BV 

Organization address
address: LOUIS COUPERUSPLEIN 2
city: DEN HAAG
postcode: 2514 HP
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 3˙502˙500 €
 EC max contribution 2˙451˙750 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-2
 Funding Scheme SME-2
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    APPLIED NANOLAYERS BV NL (DEN HAAG) coordinator 2˙451˙750.00

Map

 Project objective

The global economy depends on semiconductor devices – electronic chips – in everything from smartphones to cars, the internet to lifesaving medical equipment. This market has been driven by an exponential increase in capacity achieved through miniaturisation, now reaching its physical limits. Graphene, a one-atom thick carbon layer is seen as having the greatest potential for semiconductor improvements. However, the adoption of graphene is impeded because there is no production and transfer technology which delivers high quality graphene and is suitable for large scale production processes. Applied Nanolayers (ANL) - founded in 2012 by seasoned industry professionals & material scientists from Leiden University - is unique in developing the technology to produce and exploit quality graphene on an industrial scale. Large tool vendors, supplying tools that enable semiconductor companies to get maximum performance from the current silicon technology, have not built growth and transfer tools for graphene. Therefore, in addition to developing a production methodology, ANL has built its own tools, using existing tool platforms. This means that the ANL processes can be seamlessly integrated into mainstream industry fabrication partners. ANL has a proven automated growth process as well as a dry transfer process (TRL6). The latter is not yet fully automated. ANL’s Delft foundry location with access to the facilities of the TU Delft EKL Laboratory and world class material scientists enables ANL to propose an innovative industrial foundry service for graphene. With the SPRING project, ANL aims to scale-up and automate its 2D material foundry technology, bringing it to the commercialisation stage (TRL9). Within 5 years from the project ending, ANL expects to obtain revenues of €54m and an EBIT of nearly €9m. ANL’s mission is to be the leading global foundry for integrating 2D materials in the designated markets.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPRING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPRING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

Totem Spoon (2019)

Interactive Digital Signage with emotional intelligence for smart cities

Read More  

MEDIVAC (2019)

Machine learning software to design personalized neoantigen vaccines tailored to specific vaccine delivery systems

Read More  

RDNA (2019)

Empowering New Venture Growth - RDNA

Read More