Explore the words cloud of the DEMAND project. It provides you a very rough idea of what is the project "DEMAND" about.
The following table provides information about the project.
Coordinator |
IF GROUP ARASTIRMA GELISTIRME PROJE DANISMANLIK EGITIM SANAYI VE TICARET AS
Organization address contact info |
Coordinator Country | Turkey [TR] |
Total cost | 71˙429 € |
EC max contribution | 50˙000 € (70%) |
Programme |
1. H2020-EU.3. (PRIORITY 'Societal challenges) 2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs) 3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies) |
Code Call | H2020-SMEInst-2018-2020-1 |
Funding Scheme | SME-1 |
Starting year | 2019 |
Duration (year-month-day) | from 2019-12-01 to 2020-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | IF GROUP ARASTIRMA GELISTIRME PROJE DANISMANLIK EGITIM SANAYI VE TICARET AS | TR (ANKARA) | coordinator | 50˙000.00 |
The overall lithium ion battery market is expected to grow from $37.4B in 2018 to $100.4B by 2025, at a CAGR of 17.1%. The growth of this market is being fuelled by increasing demand for smart devices and other industrial goods. One of the major cost centers for lithium-ion batteries is anode material and it accounts for ~18% of the battery cell. The state-of-the-art anodes suffer from one or more of these problems: • Limited Li storage capacity, • Large irreversible capacity loss, • Low charge/discharge rate capability, • Poor capacity retention upon the charge/discharge cycling. Silicon(Si) is the best material in nature to create LIB anodes of highest energy density with a theoretical limit of 4200 mAh/g charge capacity. However, Si faces asubstantial challenge: Swelling due to extensive volumetric expansion during charging, which leads to breaking of the Si anode and short battery lifetimes. Usage of graphene (hugely recognized as a “wonder material”) can improve such battery attributes to a certain extent with a charge capacity of ~740 mAh/g; however, it adds to battery fabrication costs due its extremely high price. In addition, fabrication costs of the Li-ion batteries with current technologies is reaching to $300/kWh, while EC is targeting 75 €/kWh and U.S. is targeting $80/kWh by 2030. Therefore, there is an urgent need for high energy density and low cost batteries that will enable our electric future in this market. As IFGROUP, we are offering the “DEMAND” technology that allows us to modulate the dennsity of the silicon anode making it flexible and durable. The prominent advantages of DEMAND silicon anodes will be: • Provides high energy density with improved battery life (~10X); • The overall cost of the battery reduces (below $100/kWh); • Can be easily transferred to commercial battery manufacturing (scalable). DEMAND will allow us to generate €156.4M accumulated profit, 143 employees and 1.44 ROI by 2025 and €186.5M EBITDA within the same period
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEMAND" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "DEMAND" are provided by the European Opendata Portal: CORDIS opendata.