Explore the words cloud of the QUREP project. It provides you a very rough idea of what is the project "QUREP" about.
The following table provides information about the project.
Coordinator |
HUMBOLDT-UNIVERSITAET ZU BERLIN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-09-01 to 2025-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | HUMBOLDT-UNIVERSITAET ZU BERLIN | DE (BERLIN) | coordinator | 1˙500˙000.00 |
At the heart of all anticipated network-based quantum applications lies the requirement to establish quantum communication between individual network nodes over long distances. Quantum communication exceeding 100 km requires so-called quantum repeaters to extend communication beyond this limit. Mainly two types of quantum repeater schemes are being investigated: Quantum-memory-based schemes for long-distant entanglement generation and photonic encoding-based schemes for fast secure quantum communication. To date, both schemes have only been considered individually, however, a hybrid approach could overcome their distinct limitations and benefit from individual advantages. How such a system could be realized remains an open question.
This project addresses the challenges, benefits, and resource requirements for a hybrid architecture of interconnected photonic-cluster-state-based and quantum-memory-based quantum repeaters. In a theoretical study, cost parameters of such a hybrid quantum repeater for realistic system properties will be determined for the first time. Experimentally, electron spin coupled quantum dot single photon sources will be employed as resource for multi-photon cluster state generation. In parallel, a new type of quantum memory—the SnV defect in diamond, will serve to demonstrate remote entanglement. Finally, these two disparate systems will be interconnected via frequency conversion and Bell-measurements—to demonstrate cross-platform entanglement. Investigating for the first time an interconnected system of two disparate solid-state resources for quantum communication will stimulate ground-breaking research towards hybrid quantum repeater architectures.
All three objectives will benefit from the PI’s recent expertise in spectroscopy, spin control, and nanofabrication of gallium arsenide quantum dots and diamond defect centres in integrated photonic structures.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUREP" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "QUREP" are provided by the European Opendata Portal: CORDIS opendata.