Opendata, web and dolomites

THIODIV SIGNED

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "THIODIV" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-07-01   to  2022-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 224˙933.00

Map

 Project objective

THIODIV brings together the complementary expertise of Dr Nagnath More (NM, expertise in oxidative reactions and arylation processes) with Dr Paul Davies (Host, expertise in gold catalysis and sulfur-based reaction development). Gold catalysis attract significant international interest due to its ability to generate metal carbene character from alkynes delivering more sustainable synthesis. Current strategies to address the major challenge of site-selective carbene formation use terminal alkynes, or those with strongly electron-donating- or electron-withdrawing groups. Limitations derive from the gold carbenes environment and its impact on reactivity, or the incorporation of undesired directing groups. THIODIV will study the potential of sulfur-substitution to deliver complementary directing effects while introducing a desirable functional group into the resulting molecule. Preliminary studies show that sulfur can enable gold-catalysed reactivity, yet propose different directing-modes which lead to different regiocontrol. The overall aim of THIODIV is to examine the role of sulfur substitution on alkynes in gold catalysis and clarify its influence on reactivity, and hence allow wider application of sulfur-directing groups in gold catalysis and synthesis more widely. A diversity-generating dynamic reaction manifold will be used to elucidate key control parameters by studying two approaches, an oxidative rearrangement, and an arylative rearrangement. Alongside insight into reaction control and directing effects, THIODIV will provide new and efficient access to motifs that are featured in numerous bioactive compounds and are highly desirable in industry and academia as synthetic intermediates. While addressing fundamental questions of reactivity and control, THIODIV will also equip NM with the skills to incorporate hit- and lead-like properties into structure-reactivity studies to deliver new molecular entities that are applicable in pharmaceutical discovery.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THIODIV" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THIODIV" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

qCHROMDEK (2019)

Quantitative insight into chromatin nanoscale structure: sub-nuclear organisation of oncoprotein DEK

Read More