Opendata, web and dolomites

SmArtC SIGNED

Development of a Semi-Artificial Chloroplast

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SmArtC project word cloud

Explore the words cloud of the SmArtC project. It provides you a very rough idea of what is the project "SmArtC" about.

o2    stored    feedstock    synthetic    accessible    iron    renewable    combination    ap    photocatalytic    sustainable    attractive    reaction    efficiency    psii    light    membrane    chemical    smartc    thermodynamic    catalysts    driving    liposome    oxidation    society    efficient    green    fuels    photosynthetic    transition    primary    feedstocks    artificial    fuel    wo    semiartificial    appealing    solar    structural    natural    enzymes    producing    photosynthesis    complexity    selectivity    schemes    modification    worlds    bonds    reactivity    couple    demand    alternative    organic    sunlight    catalyst    limitations    advantages    barriers    carbon    economy    water    embed    membranes    overcome    methane    worldwide    critical    electron    metal    biologic    absorbers    co2    achievable    porphyrin    chemicals    dye    straightforward    force    unfortunately    dual    donor    themselves    molecular    alone    selective    photosystem    line    inspiration    revolutionise    energy    bottlenecks   

Project "SmArtC" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 212˙933.00

Map

 Project objective

The transition to a green and sustainable energy-based economy is one of the most critical challenges of our society. In this line, the production of chemicals and fuels from renewable energy, CO2 and water as primary feedstocks is an attractive alternative to solve the increasing worldwide demand for resources. Taking inspiration from Natural Photosynthesis, where sunlight energy is stored into chemical bonds producing only O2 as a by-product, an appealing approach is the use of sunlight as a driving force to produce renewable fuels from CO2 and water using artificial photosynthesis (AP). Unfortunately, efficient CO2 reduction and water oxidation (WO) remain bottlenecks in the development of efficient AP. Particularly challenging is the selective CO2-reduction due to the number of accessible reaction pathways with a similar thermodynamic reduction potential. The current proposal aims to develop a semiartificial photosynthetic system to revolutionise solar fuel production taking the advantages of both biologic (selectivity and low energy barriers due to structural complexity) and synthetic molecular systems (efficiency and straightforward modification and study) and overcome the limitations of both worlds themselves. This is a unique approach where the combination of natural enzymes with artificial systems (metal catalysts, light absorbers and synthetic membranes) will lead to new solar-fuel production schemes not achievable by natural or molecular catalysts alone. As such, SmArtC aims to embed Photosystem II (PSII), in a membrane of a liposome and couple its WO activity with the photocatalytic CO2-reduction-to-methane reactivity of a highly efficient and selective dual photocatalytic system based on an iron porphyrin catalyst and an organic dye, also embedded into the liposome. This proposal would achieve the long-standing goal of the use of water as an electron donor, CO2 as primary carbon feedstock and sunlight as a driving force to produce carbon-based fuels.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SMARTC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SMARTC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

G20LAP (2019)

G20 Legitimacy and Policymaking

Read More  

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More