Opendata, web and dolomites

CO2Polymerisation SIGNED

Conversion of CO2/H2O to Polyethylene through Cascade Electro-reduction–Polymerisation Catalysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CO2Polymerisation project word cloud

Explore the words cloud of the CO2Polymerisation project. It provides you a very rough idea of what is the project "CO2Polymerisation" about.

mass    feedstock    binding    electrolyte    catalysis    c2h4    abundant    enticing    sequentially    quantum    fuels    simultaneous    highlighted    packages    constructing    environmental    achievements    million    intermediates    reaction    annually    model    warming    catalytic    creative    responsible    transforms    computational    carbon    continuum    predict    energy    polyethylene    global    experimentally    presented    electro    conversion    metallocene    ethylene    carry    executed    dioxide    electrochemical    time    feedstocks    direct    hydrogenation    settling    occurs    microkinetic    water    ziegler    manifold    cu    co2    transport    constituents    catalyst    pd    hydrocarbon    multiscale    bifunctional    dynamics    separately    transformation    palladium    converting    copper    software    candidates    parallel    chemical    tones    cascade    demonstrated    polymerization    species    indirect    conversions    co    valuable    catalysts    multiphysics    novelty   

Project "CO2Polymerisation" data sheet

The following table provides information about the project.

Coordinator
KEMIJSKI INSTITUT 

Organization address
address: HAJDRIHOVA 19
city: LJUBLJANA
postcode: 1000
website: http://www.ki.si

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Slovenia [SI]
 Total cost 162˙040 €
 EC max contribution 162˙040 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KEMIJSKI INSTITUT SI (LJUBLJANA) coordinator 162˙040.00

Map

 Project objective

The global production of polyethylene is over 100 million tones annually. Carbon dioxide is a major cause of global warming but at the same time, it is also an abundant feedstock for hydrocarbon energy fuels. Electrochemical reduction of CO2 into valuable chemical feedstocks such as polyethylene is a highly enticing challenge for simultaneous settling of energy and environmental issues. Currently, CO2 conversion to polyethylene occurs through an indirect two-step process including CO2 catalytic conversions to ethylene (CO2 hydrogenation) and ethylene to polyethylene (ethylene polymerization) using two different catalysts, separately. The novelty of my research is constructing a bifunctional catalyst for CO2 direct conversion to polyethylene through a cascade of electro-reduction–polymerization catalysis in the presence of water. So far, a catalyst that sequentially transforms CO2 into polyethylene has not yet been presented. Manifold catalysts have been demonstrated as potential candidates for CO2 polymerization to polyethylene. The state-of-the-art catalysts as constituents of the proposed bifunctional catalyst would be Copper and Palladium. Cu is responsible for binding *CO intermediates and converting them into C2H4 and Pd is highlighted for ethylene polymerization after Ziegler-type and metallocene-type catalysts. Using computational software packages, I will develop a multiscale and multiphysics model of direct CO2 electrochemical reduction to polyethylene over Cu-Pd bifunctional catalyst to predict the intermediates and products. To achieve this goal, I will carry out a quantum chemical analysis of the reaction pathway, a microkinetic model of the reaction dynamics, and a continuum model for mass transport of all species through the electrolyte. In parallel, computational achievements will be executed experimentally to produce a creative bifunctional catalyst from merging two different catalysts for the CO2 cascade transformation to polyethylene directly.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CO2POLYMERISATION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CO2POLYMERISATION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

CLIMACY (2020)

Practices of Climate Diplomacy and Uneven Policy Responses on Climate Change on Human Mobility

Read More  

DIGILEAD (2020)

Digital leadership, well-being and performance in organizations

Read More