Explore the words cloud of the ELECTRAMMOX project. It provides you a very rough idea of what is the project "ELECTRAMMOX" about.
The following table provides information about the project.
Coordinator |
METFILTER SOCIEDAD LIMITADA
Organization address contact info |
Coordinator Country | Spain [ES] |
Total cost | 172˙932 € |
EC max contribution | 172˙932 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-SE |
Starting year | 2020 |
Duration (year-month-day) | from 2020-04-14 to 2022-04-13 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | METFILTER SOCIEDAD LIMITADA | ES (CARRION DE LOS CESPEDES) | coordinator | 172˙932.00 |
In the last decade, the field of microbial electro catalysis has given birth to a wide variety of microbial electrochemical technologies (MET). MET use the extraordinary ability of some microorganisms to transfer electrons from a substrate in wastewater to a solid-state anode, which allows for different applications e.g., production of H2 , CH4, or electricity, desalination or simply wastewater treatment. Recently, electroactive microorganisms were integrated in constructed wetlands (CW) for the treatment of municipal and industrial wastewater in a new technology called METland®. METlands allow for intensification of (previously considered extensive) CW for decentralized wastewater treatment. Although METlands perform 10-times better than conventional CW in terms of removal of organic C, about 50% of the NH4 in the wastewater remains untouched and is discharged to surface waters contributing to N pollution and high risk of eutrophication. The majority of studies about MET focus on heterotrophic microorganisms but few works have studied anaerobic NH4 oxidizing-, anode respiring microorganisms. The feammox reaction (anaerobic oxidation of ammonium using insoluble Fe3 as electron acceptor) has been shown in natural environments but has yet not been exploited for wastewater treatment. Integration of feammox in wastewater treatment by replacing the iron by an anode will enable anaerobic nitrification, minimizing the most problematic issue for treating wastewater in thousands of European small populations: the costs derived from energy-intensive aeration for conventional nitrification. In ELECTRAMMOX we will enrich and characterize anaerobic ammonia-oxidizing, anode-respiring microorganisms (electrammox bacteria) and integrate them in METlands for N removal from sewage. The project outlines a research trajectory that includes fundamental investigation of the metabolism of electrammox bacteria and their application for wastewater treatment at a pilot scale.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTRAMMOX" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "ELECTRAMMOX" are provided by the European Opendata Portal: CORDIS opendata.