Explore the words cloud of the URDNA project. It provides you a very rough idea of what is the project "URDNA" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙500˙000 € |
EC max contribution | 1˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2014-STG |
Funding Scheme | ERC-STG |
Starting year | 2015 |
Duration (year-month-day) | from 2015-05-01 to 2020-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (MUENCHEN) | coordinator | 1˙500˙000.00 |
The objective of this proposal is to define the molecular basis behind the origin and protection of unstable repetitive DNA sequences during sexual reproduction. Eukaryotic genomes contain large amounts of repetitive elements that serve vital roles in cellular physiology. However, repetitive elements are intrinsically unstable, which is caused by a high likelihood for incorrect repair when DNA breaks form within repetitive elements. During sexual reproduction, numerous DNA breaks are actively introduced into the genome, and repetitive sequences particularly threaten genome stability during this specialized developmental program. We will use the repetitive budding yeast ribosomal (r)DNA array as a model locus to study repetitive DNA instability. Our previous work showed that the outermost elements of this large repetitive array (i.e. rDNA array boundaries) are DNA break ‘fragile sites’, which attract DNA breaks during sexual reproduction. Importantly, we isolated the first known enzymatic ‘anti-DNA break’ system, which minimizes DNA break formation at rDNA array boundaries and as such is crucially required to maintain genome stability. In the experiments outlined here, we will use a combination of genomics, molecular biology and biochemistry to: 1) Interrogate the origins of the vulnerability of the repetitive rDNA boundaries for DNA breaks, and 2) Define how a first-in-class ‘anti-DNA break’ system locally protects against DNA break formation. These studies will serve as a paradigm for repetitive DNA instability, yielding major insights into the general principles that govern protection of vulnerable genomic elements during sexual reproduction. It is well established that incorrect repair of DNA breaks involving repetitive sequences during sexual reproduction causes a myriad of human congenital disorders. Therefore, we foresee that insights gained from this work have the potential to help us understand the aetiology of human genetic disease.
year | authors and title | journal | last update |
---|---|---|---|
2015 |
Nadine Vincenten, Lisa-Marie Kuhl, Isabel Lam, Ashwini Oke, Alastair RW Kerr, Andreas Hochwagen, Jennifer Fung, Scott Keeney, Gerben Vader, Adèle L Marston The kinetochore prevents centromere-proximal crossover recombination during meiosis published pages: , ISSN: 2050-084X, DOI: 10.7554/eLife.10850 |
eLife 4 | 2020-03-03 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "URDNA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "URDNA" are provided by the European Opendata Portal: CORDIS opendata.