Opendata, web and dolomites

ROOT BARRIERS

Molecular mechanisms controlling endodermis and exodermis differentiation in tomato roots

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ROOT BARRIERS" data sheet

The following table provides information about the project.

Coordinator
INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP 

Organization address
address: Carretera de la Coruna Km7.5
city: MADRID
postcode: 28040
website: www.inia.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://bradylab.org/research/
 Total cost 239˙191 €
 EC max contribution 239˙191 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-02-15   to  2019-02-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP ES (MADRID) coordinator 239˙191.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

The root system anchors the plant and its cells absorb water and nutrients. Since plants are sessile organisms, controlling external compound entry is essential for plant survival. In vascular plants, the endodermis is the innermost root ground tissue cell layer that controls entry to the plant vasculature by formation of a barrier for free diffusion of solutes from the soil. Moreover, many plant species also contain an exodermis layer which also acts as a barrier. The exodermis is located internal to the epidermis layer. In a differentiated state, cells of both layers contain a Casparian strip. In Arabidopsis the Casparian strip is a lignin-like structure that is deposited as a ring in the transverse section of cells and around the secondary cell wall. Recently, the developmental framework of endodermis differentiation has been described in Arabidopsis and some important molecular players identified. Here, we explore whether endodermis and exodermis differentiation are regulated similarly. Since Arabidopsis does not contain an exodermis layer, the proposed project will use the tomato root as a model system to address endodermis and exodermis differentiation at the phenotypic and molecular level. Moreover, we will address whether there are differences among species that grow in different environments similar to the environment in which their growth has been adapted. In order to address this problem, newly developed tools and technology will be used to obtain a tomato root cell-type specific transcriptome as well as data analyses required for system biology and genomic approaches. The proposed project will shed new light on endodermis and exodermis development in tomato at the phenotypic and molecular level and will lay the foundation for study in other plant species.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ROOT BARRIERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ROOT BARRIERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More