Opendata, web and dolomites

MagProtoCell

Magnetic micromachines based on protocell design and engineering

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MagProtoCell project word cloud

Explore the words cloud of the MagProtoCell project. It provides you a very rough idea of what is the project "MagProtoCell" about.

origin    guez    progress    bristol    iacute    multidisciplinary    temporal    mann    clean    movement    methodology    alternative    stepping    thereby    chemical    noncontact    functions    levels    construction    magnetic    mfs    dr    artificial    class    date    environment    few    drug    prof    remote    involve    bioreactor    diagnosis    particles    arco    last    locations    responsive    university    lifelike    machines    enhanced    composition    concentrations    biomimetic    couple    replication    encapsulation    made    exhibiting    stimuli    selective    disposition    ways    cutting    synthetic    rodr    stimulate    medium    local    materials    inclusion    employing    protocells    exchange    of    directed    fluidic    chemotaxis    environments    colloidal    earth    expertise    chemicals    forces    outcome    stone    leadership    regard    edge    micromachines    engineering    frs    mf    clinical    strategic    sensing    sense    surrounding    cellular    group    metabolism    motility    construct    life    protocell    spatial    external    hosting   

Project "MagProtoCell" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bristol.ac.uk
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 183˙454.00

Map

 Project objective

Protocells are artificial cellular systems exhibiting lifelike properties, which are proposed as a stepping-stone for understanding the origin of life on Earth. Features such as encapsulation, replication, metabolism and selective exchange of chemicals with the environment will enable their use as micromachines in a number of emerging applications (e.g., environment clean-up, clinical diagnosis, drug delivery, remote sensing, bioreactor technology). However, progress in such applications will be enhanced by the synthetic construction of protocells capable of directed movement in fluidic environments in response to external stimuli. To date, motility has been achieved only in a few cases, which involve a response to changes in chemical concentrations (chemotaxis) in the surrounding medium. However, controlling the chemical composition of the local environment is challenging, and thus alternative ways to stimulate motility are needed. In this regard, external magnetic fields (MFs) will enable high levels of control of protocell motility and spatial disposition to be achieved by employing noncontact forces. This is the aim of this proposal: to design and construct synthetic protocells able to sense and respond to external MFs. A key outcome of the work will be the development of a new class of magnetic micromachines based on protocell design and engineering. Such machines will couple MF-directed motility with the temporal and spatial delivery of advanced biomimetic functions. The key factor of the proposed methodology is the inclusion of colloidal magnetic particles at strategic locations in the protocell composition or in the external medium. Thereby, the expertise of the applicant (Dr. Rodríguez Arco) in the field of MF-responsive materials will be applied to the multidisciplinary and cutting-edge field of protocells in which the hosting group at the University of Bristol (under the leadership of Prof. Mann FRS) has made great progress in the last few years.

 Publications

year authors and title journal last update
List of publications.
2017 Laura Rodriguez-Arco, Mei Li, Stephen Mann
Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects
published pages: TBC, ISSN: 1476-1122, DOI: 10.1038/nmat4916
Nature Materials TBC 2019-07-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGPROTOCELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGPROTOCELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

Migration Ethics (2019)

Migration Ethics

Read More  

PTOoC (2019)

Plug-n-Play Tool-kit of Organ-on-Chips

Read More