Explore the words cloud of the RESILIENCE project. It provides you a very rough idea of what is the project "RESILIENCE" about.
The following table provides information about the project.
Coordinator |
JOHN INNES CENTRE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Project website | http://www.jic.ac.uk/directory/vinod-kumar/ |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-09-01 to 2017-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | JOHN INNES CENTRE | UK (NORWICH) | coordinator | 195˙454.00 |
The proposed project aims to define the molecular framework at the interface of plant immunity and temperature signaling pathways. To sense and respond to external environmental cues is critical for adaptation of plants to local environments. Temperature is a key seasonal variable controlling plant processes like developmental decisions as well as outcomes of plant-pathogen interactions. Elevated temperatures cause reduced resistance to pathogens resulting in enhanced susceptibility. Climate change, most importantly increasing global temperatures, poses a severe threat to agriculture and biodiversity. Though known for long, the phenomenon of temperature induced disease susceptibility is not sufficiently well understood at the molecular level. A unique Arabidopsis mutant resilient2 (res2) with temperature resilient defense response has been identified through a novel forward genetic screen. The res2 mutant also displays defective temperature sensing phenotypes suggesting that RES2 encodes a novel thermosensory molecule that modulate plant defense. I will systematically characterize the res2 mutant to define the molecular mechanism by which RES2 regulates temperature sensing and plant immunity. Findings of this study will answer the longstanding fundamental biology question of how environmental signals are integrated, especially the molecular basis for temperature induced defense breakdown. This will contribute to developing climate resilient crops in the wake of unprecedented increase in temperature as a result of global climate change.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Sreeramaiah N. Gangappa, S. Vinod Kumar DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms published pages: 344-351, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2016.12.046 |
Cell Reports 18/2 | 2019-06-13 |
2017 |
Sreeramaiah N. Gangappa, Souha Berriri, S. Vinod Kumar PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis published pages: 243-249, ISSN: 0960-9822, DOI: 10.1016/j.cub.2016.11.012 |
Current Biology 27/2 | 2019-06-13 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESILIENCE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "RESILIENCE" are provided by the European Opendata Portal: CORDIS opendata.