Explore the words cloud of the NeutronOPV project. It provides you a very rough idea of what is the project "NeutronOPV" about.
The following table provides information about the project.
Coordinator |
THE UNIVERSITY OF SHEFFIELD
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Project website | http://www.gabrielbernardo.com/neutronopv.html |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-07-01 to 2017-06-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE UNIVERSITY OF SHEFFIELD | UK (SHEFFIELD) | coordinator | 195˙454.00 |
This project’s aim is to contribute to a better understanding of the relationship between processing conditions, active layer morphology and device performance in polymer solar cells (PSC), providing the understanding needed to guide the search for practical processing routes. The secondary aim is to develop new and more powerful characterisation techniques, to study PSCs, using neutrons in particular, and exploiting the potential of powerful and innovative new instruments at the neutron source ISIS, which is a partner on this proposal. These innovative new variants of neutron reflectivity, off-specular scattering and small angle scattering (SERGIS and SESANS), use spin-echo encoding to probe length-scales previously inaccessible by neutron techniques. This work will focus on some of the most recently introduced and highest-efficiency polymers, such as PBDTTT-EFT, PTB7 and PCDTBT, creating thin films for devices both by the laboratory-based spin-coating method and also the industrially-scalable method of spray-coating. The methodology to be used will consist in processing the active layers from mixed solvents with step graded variations in composition, with the main purpose of generating a series of devices with graded variations in morphology. The as-produced active layers will be systematically investigated and compared in terms of morphology, charge mobility and photovoltaic performance; the neutron techniques available at the ISIS Neutron Spallation Source (Didcot, UK) will be complemented with a large suite of conventional laboratory-based techniques available at Sheffield University, and by x-ray scattering, both laboratory based and at synchrotron sources. This mixed solvent approach will be also valuable for scale up, especially by removing the need for halogenated solvents.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Yiwei Zhang, Andrew J. Parnell, Fabio Pontecchiani, Joshaniel F. K. Cooper, Richard L. Thompson, Richard A. L. Jones, Stephen M. King, David G. Lidzey, Gabriel Bernardo Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC71BM devices published pages: 44269, ISSN: 2045-2322, DOI: 10.1038/srep44269 |
Scientific Reports 7 | 2019-07-24 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUTRONOPV" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEUTRONOPV" are provided by the European Opendata Portal: CORDIS opendata.