Opendata, web and dolomites

SolarIC SIGNED

A New Monitor for Cosmic Rays in the Solar System: Inverse-Compton Emission from Cosmic-Ray Electrons Scattering with Sunlight

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SolarIC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT VAN AMSTERDAM 

Organization address
address: SPUI 21
city: AMSTERDAM
postcode: 1012WX
website: www.uva.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 175˙572 €
 EC max contribution 175˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT VAN AMSTERDAM NL (AMSTERDAM) coordinator 175˙572.00

Map

 Project objective

How well do we understand charged particle propagation in the solar system? This is an important topic for both astrophysics and space weather. Unfortunately, we still lack a fully predictive theory to this problem; a major challenge to this is the lack of cosmic-ray (CR) measurement throughout the solar system, as most data are measured locally on Earth.

I propose to overcome this hurdle in my SolarIC project by using the solar inverse-Compton (IC) emission—produced by CR electrons scattering with Sunlight—as a remote probe for CR distribution throughout the solar system. I will achieve this through three main results. First, I will detect and analyze the solar IC emission with Fermi-LAT data to study its morphology and time dependence. Second, I will calculate the theoretical prediction of the solar IC emission for both GeV and MeV regimes, utilizing state-of-the-art CR simulations. This will be a theoretical foundation for interpreting the data. And for the first time, I will compute the polarization signatures of solar IC emission. Third, building on the previous two results, I will constrain and test contemporary models of CR propagation in the solar system through cross correlation of the Fermi-LAT data with the theory prediction. I will also perform a mock tomographic analysis of the solar IC emission, utilizing the polarization signature. This will be an important and novel prediction for the proposed future MeV space gamma-ray telescopes, such as e-ASTROGAM.

Through my SolarIC project, I will demonstrate that solar IC emission can be used to provide valuable data and constraints on CR distribution in the solar system. This will be an important step leading to a better understanding of charged-particle propagation in the solar system, which will have significant impacts on many astrophysics disciplines including solar physics, cosmic-ray physics, neutrino astrophysics, and dark matter searches.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOLARIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SOLARIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More