Opendata, web and dolomites

N-SHEAD

Nanoarrays: Self-assembled Hotspots for Enhanced Analyte Detection

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "N-SHEAD" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.imperial.ac.uk/edel-group/
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-04-08   to  2017-04-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 183˙454.00

Map

 Project objective

I aim to transform the way disease is currently detected through innovations in the design of nanoparticle-based biosensors that can be used to detect a number of diseases with global implications. The three most significant challenges facing biosensing are inaccuracy, insensitivity, and low-throughput detection. One technique that is capable of facing these challenges is Surface Enhanced Raman Scattering (SERS) which has demonstrated potential for extreme sensitivity (single molecule detection) and rapid, multiple-analyte detection within complex mixtures. Early stage diagnosis of disease requires the detection of trace amounts of analyte in multi-component biological samples (blood, urine, saliva). It is therefore particularly important for sensors to reach the single-molecule detection limit. Further, the ability to analyse biological samples without separation or other treatment steps is a crucial advantage of SERS. My approach involves the electrotuneable self-assembly of plasmonic nanoparticles at a liquid-liquid interface for SERS detection, overcoming the severe limitations of current sensors (sensitivity, specificity and speed). I will electrochemically control the positioning of the nanoparticles in a precise manner to maximise the Raman signal. Additionally I will utilise shaped nanoparticles, such as stars and ellipsoids, exploiting the enormous Raman enhancements observed at sharp metallic tips to push the sensitivity towards single-molecule detection limits. The ultrasensitive sensing capabilities will be extended to colorectal cancer diagnosis the third most prevalent cancer in the world which effects 1.4 million people per year. Due to the versatility of this system it can be adapted to any disease or virus where the related biomarker is known. This approach will allow me to build a new generation of sensors that will transform single-molecule SERS detection

 Publications

year authors and title journal last update
List of publications.
2016 Leonora Velleman, Debabrata Sikdar, Vladimir A. Turek, Anthony R. Kucernak, Steve J. Roser, Alexei A. Kornyshev, Joshua B. Edel
Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces
published pages: 19229-19241, ISSN: 2040-3364, DOI: 10.1039/C6NR05081F
Nanoscale 8/46 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "N-SHEAD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "N-SHEAD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More