Opendata, web and dolomites

Micropod

MICROPOrous Devices for next-generation therapeutic delivery

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Micropod project word cloud

Explore the words cloud of the Micropod project. It provides you a very rough idea of what is the project "Micropod" about.

bioengineering    poor    performance    tissue    fellowship    minimally    infusion    needle    degradation    absorption    efficient    drug    hollow    skin    engineer    suffers    biologics    eoin    bed    molecule    lecturer    effect    consistent    ireland    mechanical    limited    oral    classic    platform    microdevices    phobia    manufacture    gilchrist    dublin    commercial    close    dermal    capillary    aid    advantages    therapeutics    micromanufacturing    limiting    porous    rapid    proximity    reintegrating    host    injuries    vaccines    prof    biomedical    locations    precise    porosity    patches    synergise    small    translate    prone    scalable    techniques    university    prohibitively    expensive    transdermal    proficiency    intestinal    designed    hypodermic    michael    implementing    expertise    microneedle    career    passive    manufacturing    device    risk    leader    permeability    penetration    microneedles    medical    invasive    patients    innovation    biotech    proposes    computational    dr    molecules    scaling    stick    returned    cearbhaill    college    soft    interconnected    therapeutic   

Project "Micropod" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN 

Organization address
address: BELFIELD
city: DUBLIN
postcode: 4
website: www.ucd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Project website http://mdd.ucd.ie
 Total cost 187˙866 €
 EC max contribution 187˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2015
 Duration (year-month-day) from 2015-04-14   to  2017-04-13

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN IE (DUBLIN) coordinator 187˙866.00

Map

 Project objective

Dr. Eoin O’Cearbhaill, a Biomedical Engineer, recently returned to Ireland to become a Lecturer in Bioengineering at University College Dublin. This fellowship will enable him to work with Prof. Michael Gilchrist to develop his career by implementing a research platform based on medical devices for therapeutic delivery, with a specific focus on microneedles. Microneedle transdermal patches are an important advance in the delivery of therapeutics, especially vaccines and biotech molecules. They offer advantages over the classic approaches of hypodermic drug delivery, (needle phobia, risk of needle stick injuries), oral delivery (degradation and poor intestinal permeability of biologics), and traditional skin patches (limited to passive delivery of small molecules). The traditional hollow needle design suffers from a scaling effect, limiting mechanical performance at the penetration depth required for efficient absorption and large molecule delivery. Current microneedle patches targeting transdermal delivery are often prohibitively expensive to manufacture and are prone to mechanical failure. Here, Dr. O’Cearbhaill proposes the development of microneedle patches with interconnected porosity, aimed at consistent, rapid delivery to dermal tissue, in close proximity to the capillary bed. This platform technology can also be applied to other minimally invasive devices designed to provide controlled therapeutic infusion to precise locations. The applicant will develop porous microdevices, using manufacturing techniques that are scalable and cost-effective, enhancing the commercial value and potential to rapidly translate this technology to patients. The reintegrating applicant’s proficiency in medical device concept development will synergise with the host’s expertise in computational modelling of penetration in soft tissue and micromanufacturing to aid in the applicant’s development as a leader in medical device design and innovation.

 Publications

year authors and title journal last update
List of publications.
2015 Cahill, Ellen Mary; O\'Cearbhaill, Eoin D.
Towards Biofunctional Microneedles for Stimulus Responsive Drug Delivery
published pages: , ISSN: 1520-4812, DOI: 10.1021/acs.bioconjchem.5b00211
Bioconjugate Chemistry 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROPOD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROPOD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More