Opendata, web and dolomites

CoopClickCat

CoopClickCat

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CoopClickCat" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN 

Organization address
address: BELFIELD
city: DUBLIN
postcode: 4
website: www.ucd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 175˙866 €
 EC max contribution 175˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2017-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN IE (DUBLIN) coordinator 175˙866.00

Map

 Project objective

The CoopClickCat project features Cooperatively operating Click-derived ruthenium Catalysts for the efficient oxidation of organic and inorganic substrates with high rates and turnover numbers. For this purpose, triazolylidene ligands, which are readily available through click-chemistry, will be functionalized with a cooperative donor site for improving the catalytic activity of the bound ruthenium center. The ligand design involves a sterically constraint position of the donor site, thus preventing this group from coordination to the metal center. The availability of a Lewis acid (ruthenium center) and base in a confined arrangement will enable the two sites to act cooperatively, thus providing access to concerted proton and electron transfer processes. This synergistic behavior lowers activation barriers and hence leads to a smoother potential energy surface for reduction and oxidation reactions. This unique arrangement will lead to new oxidative coupling processes and reduction pathways for the activation of abundant starting materials such as alcohols and amines, and eventually also water to reach unprecedented activity in ruthenium-catalyzed water oxidation catalysis. This project efficiently combines expertise of the researcher (Dr. Marta Valencia; hydride chemistry, alcohol oxidation) with core competences of the host lab (Professor Martin Albrecht, University College Dublin; triazolylidene chemistry, water oxidation).

 Publications

year authors and title journal last update
List of publications.
2016 Marta Valencia, Helge M?ller-Bunz, Robert A. Gossage, Martin Albrecht
Enhanced product selectivity promoted by remote metal coordination in acceptor-free alcohol dehydrogenation catalysis
published pages: 3344-3347, ISSN: 1359-7345, DOI: 10.1039/C6CC00267F
Chem. Commun. 52/16 2019-07-24
2017 Marta Valencia, Ana Pereira, Helge M?ller-Bunz, Tom?s R. Belderra?n, Pedro J. P?rez, Martin Albrecht
Triazolylidene-Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal-Ligand Induced Catalytic Dehydrogenation of Amines
published pages: , ISSN: 0947-6539, DOI: 10.1002/chem.201700676
Chemistry - A European Journal 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COOPCLICKCAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COOPCLICKCAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More